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PREFACE

Three and a half years have passed since I started this research on March 1, 1987. During this period,
so many things were designed and accomplished, and as the principal investigator I find it extremely
difficult to include and systematize all the important findings and implications within a single final
report. It is my regret that many of them have to be left out, but I did my best within a limited
amount of time with the hope that this final report will help the reader to grasp the outline of the
whole accomplishment.

There were five main objectives in the original research proposal, and they can be summarized as
follows.

[I Further investigate the nonparametric approach to the estimation of the operating char-
acteristics of discrete item responses.

12] Revise and strengthen the package computer programs and eventually implement them in
the Unix Operating System.

131 Investigate an ideal computerized adaptive testing procedure and eventually materialize it
in the SUN microcomputer system networked with IBM personal computers.

[41 Investigate multidimensional latent trait theory.

[51 Pursue item validity and test validity using the multidimensional latent space.

Out of these objectives, Objectives 111 and 151, together with Objectives 12) and 131, were most intensively
pursued. The highest productivity belongs to this part of the research, which provides us with valuable
future perspectives of research.

During the research period there were many people who helped me as assistants, secretaries, etc.,
as I acknowledged in each research report. Also people of the Office of Naval Research, especially Dr.
Charles E. Davis, and those of the ONR Atlanta Office, including Mr. Thomas Bryant, have been of
great help in conducting the research. I would like to express my gratitude to all of them.

Thanks are also due to my assistants, Nancy H. Domm and Raed A. Hijer, who helped me in
preparing this final report. Appreciation is also extended to my former assistants, Christine A. Golik
and Philip S. Livingston, who still helped me occasionally during the research period.

September 20, 1990
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I Introduction

This is the final report of the multi-year research project entitled Validity Study in Multidimensional
Latent Space and Efficient Computerized Adaptive Testing, which was sponsored by the Office of Naval
Research in 1987 through 1990 (N00014-87-K-0320). The accomplishments include those which have
already been published as ONR research reports as well as those still in progress, which will be published
in later years as part of more comprehensive research results.

The rest of this chapter will describe papers published or presented during the research period, and
related events. The contents of the research accomplishments will be summarized and systematized,
and will be described in the succeeding chapters.

[1.1] Research Reports3 The following are the ONR research reports that have been published in the present research project.

(1) Modifications of the Test Information Function. Office of Naval Research Report 90-1,
1990.

(2) Predictions of Reliability Coefficients and Standard Errors of Measurement Using the Test
Information Function and its Modifications. Office of Naval Research Report 90-2, 1990.

(3) Validity Measures in the Context of Latent Trait Models. Office of Naval Research Report
90-3, 1990.

(4) Differential Weight Procedure of the Conditional P.D.F. Approach for Estimating the
Operating Characteristics of Discrete Item Responses. Office of Naval Research Report

90-4, 1990.

(5) Content-Based Observation of Informative Distractors and Efficiency of Ability Estimation.
Office of Naval Research Report 90-5, 1990.

[1.2] Special Contribution Paper

During this period, with the request of Dr. Chikio Hayashi, president of the Behaviormetric Society,
a special contribution paper entitled Comprehensive Latent Trait Theory was written and published in
Behaviormetrika, Vol. 24, 1988. The paper is based upon the invited address, a one hour special lecture
overviewing latent trait models, which was given at the 1987 Annual Meeting of the Behaviormetric
Society in 1987 at Kyushu University, Fukuoka, Japan, under the title, Overview of Latent Trait Models.
There were more than two hundred researchers in the audience, and the summary of the paper is given
as Appendix B of the author's ONR Final Report: Advancement of Latent Trait Theory, which was
published in 1988.

[1.3] Paper Presentations at Conferences

There are thirteen papers presented at conferences during this research period, excluding those in
1987 which have been reported in " Final Report: Advancement of Latent Trait Theory." They include
ONR contractors' meetings, and are listed below.

(1) A Robust Method of On-Line Calibration. American Educational Research Association
Meeting, New Orleans, 1988. U. S. A.

(2) Some Modifications of the On-Line Item Calibration Methods. ONR Conference on Model-
Based Measurement, Iowa City, 1988. U. S. A.

I
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(3) Information Functions of the General Model Developed for Differential Strategies and Pos-
sibilities for Applying Half-Discrete, Half-Continuous Models for Projective Techniques.
ONR Conference on Model-Based Measrrement, Iowa City, 1988. U. S. A.

(4) Some Refinement in the Estimation of the Operating Characteristics of Discrete Item Re-
sponses without Assuming any Mathematical Form. Psychometric Society Meeting, Los I
Angeles, 1988. U. S. A.

(5) Prospect of Analyzing Rorschach Data by Sophisticated Psychometric Methods. Sympo-
sium: The Burstein-Loucks Rorschach Scoring System: Clinical and Psychometric De-
velopments. American Psychological Association Annual Meeting, Atlanta, 1988. U. S.
A.

(6) Latent Trait Approach to Rorschach Diagnosis Based upon the Burstein-Loucks Scoring I
System. American Educational Research Association Annual Meeting, San Francisco, 1989.
U. S. A. (round-table session)

(7) Some Considerations on Validity Measures in Latent Trait Theory. ONR Conference on

Model-Based Measurement, Norman, OK, 1989. U. S. A.

(8) Differential Weight Procedure of the Conditional P.D.F. Approach in the Estimation of n

Operating Characteristics of Discrete Item Responses. ONR Conference on Model-Based
Measurement, Norman, OK, 1989. U. S. A.

(9) Some Reliability and Validity Measures in the Context of Latent Trait Models. Psychome- I
tric Society Annual Meeting, Los Angeles, 1989. U. S. A.

(10) Prospect of Applying Latent Trait Models and Methodologies Accomodating Both Psycholog-
ical and Neurological Factors. American Educational Research Association Annual Meet-
ing, Boston, 1990. U. S. A.

(11) Reliability/Validity Indices in the Context of Latent Trait Models. American Educational U
Research Association Annual Meeting, Boston, 1990. U. S. A.

(12) Further Considerations for the Differential Weight Procedure of Estimating the Operating
Characteristics of Discrete Item Responses. ONR Conference on Model-Based Measure- I
ment, Portland, OR, 1990. U. S. A.

(13) Modified Test Information Functions, Their Usefulnesses and Prediction of the Test Reli-
ability Coefficient Tailored for a Specific Ability Distribution. ONR Conference on Model-
Based Measurement, Portland, OR, 1990. U. S. A.

[1.4] Other Events I
The principal investigator gave a seminar entitled Comprehensive Latent Trait Models in September,

1989, at the National Center for University Entrance Examination, Tokyo, Japan, invited by Dr. Shuichi
Iwatsubo of the Center and Dr. Kazuo Shigematsu of the Tokyo Engineering University.

She also made research collaborations with Professor Sukeyori Shiba of the University of Tokyo, and
with Dr. Takahiro Sato of the C & C Information Technology Research Laboratories of Nippon Electric
Company, Japan.

I
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II Backgrounds and Basic Concepts Used throughout the Re-
search

In this chapter, the backgrounds and the basic concepts upon which the present research has been
conducted are introduced. The reader is directed to the auther's two previous ONR final reports
(Samejima, 1981b, 1988) and other ONR research reports, if he/she wants to know these concepts and

developments in more detail.

[II.1] General Concepts in Latent Trait Models

Let 0 be ability, or latent trait, which assumes any real number. Let g (= 1, 2,., n) denote an
item, k. be any discrete item response to item g , and Pk,(0 ) denote the operating characteristic of
kg , or the conditional probability assigned to kg , given 6 , i.e.,

(2.1) Pg(O) -- prob.[kg 10]

We assume that Pkg(0) is three-times differentiable with respect to 6 . We have for the item response
information function (Samejima, 1972)

a2  a pk,(0 { a2
(2.2) Ik9 (0) 0 log Pk () = [ k " (0)}-1] 2  -[Pk,(0) [Pk,(0) -'

and the item information function is defined as the conditional expectation of 1k, (0) , given 0 , such

that

(2.3) Ig(6) = E[Ik,(O) 10] = Ik(O)Pkg(O) = Z [ Pkg(O)]2[Pkg(6)]- 1

k, k'

In the special case where the item g is scored dichotomously, this item information function is simplified
to become

(2.4) 19(0) = [0 p ()j 2  [{p ()}{ _ p(0)}

where Pg(O) denotes the operating characteristic of the correct answer to item g

Let V be a response pattern such that

(2.5) V = { k}' g = 1,2,...,n

The operating characteristic, Pv (0) , of the response patten V is defined as the conditional probability
of V , given 0 . Throughout this report the principle of local independence is assumed to be valid,
so that within any group of examinees all characterized by the same value of the latent variable 6
the distributions of the item response categories are all independent of each other. Thus the operating
characteristic of a given response pattern is a product of the operating characteristics of the item
response categories contained in that response pattern, so that we can write

(2.6) Pv(0) I1 Pk,,(6)
kcV

3
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The response pattern information function, Iv(0) , (Samejima, 1972) is given by

(2.7) Iv (0) 2- logV () -- , (0)
kg cV

and the test information function, 1(0) 'is defined as the conditional expectation of 1v (0) , given 0 I
and we obtain from (2.2), (2.3), (2.5), (2.6) and (2.7)

(2.8) 1(O) = E[Iv(0) 10 = (0) = I()
V g=1

[11.2] Critical Observations of the Reliability, Standard Error of Measure- I
ment and Validity of a Test

The reliability coefficient and the standard error of measurment in classical mental test theory are two
concepts that have widely been accepted and used by psychologists and test users in the past decades. I
The author has pointed out repeatedly, however, that these measures are actually the attributes of a
specified group of examinees as well as of a given test. In addition, even if we take this fact into account,
representation of these measures by single numbers results in over-simplification and the lack of useful
information for both theorists and actual users of tests. In contrast to this, in latent trait models,
the item and test information functions, which are defined by (2.3) and (2.8), respectively, provide us
with abundant information about the local accuracy of estimation, a concept which is totally missing I
in classical mental test theory. These functions are population-free, i.e., they do not depend upon any
specific group of examinees as the reliability coefficient and the standard error of measurment do.

Unlike the progressive dissolution of test reliability, test validity is one concept that has rather 3
been neglected in the context of latent trait models. Several types of validity have been identified and
discussed in classical mental test theory, which include content validity, construct validity, and criterion-
oriented validity. Perhaps we can say that, in modern mental test theory, both content validity and
construct validity are well accomodated, although they are not explicitly stated. If each item is based
upon cognitive processes that are directly related to the ability to be measured, then the content of
the operationally defined latent variable behind the examinees' performances will be validated. Also

construct validity can be identified, with all the mathematically sophisticated structures and functions
which characterize latent trait models and which classical mental test theory does not provide. With
respect to the criterion-oriented validity, however, so far latent trait models have not offered so much

as they did to the test reliability and to the standard error of measurement.

In classical mental test theory, the validity coefficient is again a single number, i.e., the product-
moment correlation coefficient between the test score and the criterion variablc. Since the correlation

coefficient is largely affected by the heterogeneity of the group of examinees, i.e., for a fixed test the 1
coefficient tends to be higher when individual differences among the examinees in the group are greater,
and vice versa (cf. Samejima, 1977b), we must keep in mind that so-called test validity represents the
degree of heterogeneity in ability among the exminees tested, as well as the quality of the test itself.

[11.3] Nonparametric Approach to the Estimation of the Operating Char-
acteristics of Discrete Item Responses I

As early as in 1977 the author proposed Normal Approximation Method (Saniejima, 1977b) which
can be used for item calibration both in computerized adaptive testing and in paper-and-pencil testing.
She also discussed the effective use of information functions in adaptive testing (Samejima, 1977a). U
Since then, with the support by the Office of Naval Research, she has developed several approaches and
methods for the same purpose (cf. Samejinia, 19 7 7c, 1978a, 1978b, 197 8c, 1978dI, 1978e, 1978f, 1980a, 5
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1980b, 1981a, 1981b, 1988; Samejima and Changas, 1981). For convenience, they can be categorized as

follows.

Approaches Methods

(1) Bivariate P.D.F. Approach (1) Pearson System Method
(2) Histogram Ratio Approach (2) Two-Parameter Beta Method

(3) Curve Fitting Approach (3) Normal Approach Method
(4) Conditional P.D.F. Approach (4) Lognormal Approach Method

(4.1) Simple Sum Procedure
(4.2) Weighted Sum Procedui,

(4.3) Proportioned Sum Procedure

Here by an approach we mean a general procedure in approaching the operating characteristics of a
discrete item response, and by a method we mean a specific method in approximating the conditional
density of ability, given its maximum likelihood estimate. Thus a combination of an approach and a
method provides us with a specific procedure for estimating the operating characteristic of a disc:ete
item response.

These approaches and methods are characterized by two features, i.e.,

(1) estimation is made without assuming any mathematical forms for the operating
characteristics of discrete item responses, and

(2) estimation is efficient enough to base itself upon a relatively small set of data of, say,

several hundred to a few thousand examinees.

The backgrounds common to the Bivariate and Conditional Approaches and the differences among
different methods can be described as follows. For the sake of simplicity in handling mathematics, the
tentative transformation of 0 to r is made by

(2.9) CI1I [I(t)ll/2dt+Co

where Co is an arbitrary constant for adjusting the origin of r , and C, is an arbitrary constant

which equals the square root of the test information functions, I* () , of r , so that we can write

(2.10) C 1 = jI*(r)11/2

for all r . This transformation will be simplified if we use a polynomial approximation to the square
root of the test information function, [I(0)1'1 2 , in the least squares sense which is accomplished by
using the method of moments (cf. Samejima and Livingston, 1979) for the meaningful interval of r-

Thus (2.9) can be changed to the form

(2.11) r -C -- (k + l) -Ok+ + C,,
k=O

k=-o

~where ak (k =0, 1, .. . ,m) is the kc -th coefficient of the polynomial of degree m approximating the

I
square root of 1() , and aZ is the new k -th coefficient which is given by
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(2.12) k I (COk)-'aki k=1,2,...,m+1

With this transformation of 0 to r and by virtue of (2.10), we can use the asymptotic normality

with the two parameters, r and Cj - 
, as the approximation to the conditional distribution of themaximum likelihood estimator f , given its true value r (cf. Samejima, 1981b). Then the first through

fourth conditional moments of r , given f , can be obtained from the density function, g*() , of 

and from the constant C1 by the following four formulae (cf. Samejima, 1981b):

(2.13) E(r If) =9+ C ogg
'd9

(2.14) Var.(r I f) = C -"2 [1 + C -2 log g*()] ,

(2.15) E[{j - E(r I f)}3 I f] C-6 3 log g*()]

and 3

(2.16) E[{r - E(r I f)}4 9I = C 4 (3 + 6C 2 log g*(f) + 3C4({-d2 log g i " 2

Sc d{ logg"()}] . I
This density function, g'(f) , can be estimated by fitting a polynomial, using the method of moments

(cf. Samejima and Livingston, 1979), as we did in the transformation of 0 to r , based upon the

empirical set of f 's . Note that in the above formulae the first moment is about the origi" , while the

other three are about the mean.

The two coefficients, I1 and f82 , and Pearson's criterion Pc are obtained by j
(2.17) 3 2 I
(2.18) 82= 4 / 2

and

(2.19) X = 81(02 + 3)214(202 - 3/31 - 6)(4/2 - 3#1)1 -

by substituting /2 , 113 and A4 by Var.(r I ) , E[{r - E(r 1 )}3 1 ] and E{r - E(r I )}4 I9 j
respectively, which are obtained by formulae (2.14), (2.15) and (2.16).

In the Bivariate P.D.F. Approach, we approximate the bivariate distribution of the transformed

latent trait r and its maximum likelihood estimate f for each subpopulation of ezaminees who share 5
6



the same discrete item response to a specified item. Thus the procedure must be repeated as many times
as the number of discrete item response categories for each separate item. It is rather a time-consuming
approach, and the CPU time for the item calibration increases almost proportionally to the number of
new items.

In contrast to this, Conditional P.D.F. Approach deals with the total population of subjects, and
all the items together. Effort is focused upon the approximation of the conditional distribution of r ,
given f , for the total population of examinees, and then the result is branched into separate discrete
item response subpopulations for each item.

If we compare the two approaches with each other, therefore, we can say that Bivariate P.D.F.
Approach is an orthodox approach, while Conditional P.D.F. Approach needs an assumption that the
conditional distribution of r , given f , is unaffected by the different subpopulations of examinees.
While this assumption can only be tolerated in most cases, the latter approach has two big advantages in
the sense that the CPU time required in item calibration is substantially less, and that it does not have
to deal with subgroups of small numbers of subjects in approximating the joint bivariate distributions

of r and f.

In each of these two approaches, we can choose one of the four methods listed earlier in estimating

the bivariate density of r and f , or the conditional density of r , given its maximum likelihood

estimate f . In so doing, in the Pearson System Method, we use all four conditional moments of
r , given f , which are estimated through the formulae (2.13) through (2.16), and, using Pearson's
criterion . , which is given by (2.19), one of the Pearson System density functions is selected. In the
Two-Parameter Beta Method two of the four parameters of the Beta density function, i.e., the lower
and upper endpoints of the interval of r for which the Beta density is positive, are a priori given, and
the other two parameters are estimated by using the first two conditional moments of r , given f ,
which are provided by (2.13) and (2.14), respectively. In the Normal Approach Method, again we use

only the first two conditional moments of r , given f , as the first and second parameters of the normal
density function.

If we compare these three methods, it will be appropriate to say that both Two-Parameter Beta

Method and Normal Approach Method are simpler versions of Pearson System Method. And yet the
latter two methods have an advantage of using only the first two estimated conditional moments of
r , given f , whereas the former requires the additional third and fourth conditional moments, whose
estimations are less accurate compared with those of the first two conditional moments. If we compare
the Two-Parameter Beta Method with the Normal Approach Method, we will notice that the former
allows non-symmetric density functions, while the latter does not. This is an advantage of the Two-

Parameter Beta Method over the Normal Approach Method, and yet the former has the disadvantage
of the requirement that two of the four parameters should a priori be set.

Lognormal Approach Method was developed later, which uses up to the third conditional moment
and allows more flexibilities in the shape of the conditional distribution of r , given f , than the Normal

Approach Method. It was intended that a happy medium between the Pearson System Method and tile
Normal Approach Method would be realized, in the effort of ameliorating the disadvantages of these
two methods and of keeping their separate advantages.

[11.4] Possible Non-Monotonicities of the Operating Characteristics

As early as in 1968 the author wrote about and discussed the conceivable non-monotonicity of tile
operating characteristic of the correct answer of the multiple-choice test item, which is based strictly
upon theory (cf. Sarnejima, 1968). Since then, such a phenomenon has actually been observed with
empirical data. For example, Lord and Novick reported such a curve when they plotted the percent of
the correct answer against the test score for each item as an approximation to the item characteristic
function (cf. Lord and Novick, 1968, Chapter 16). Since, as their Theorem 16.4.1 states, the average,

7
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over all items, of the sample item-test regressions falls along a straight line through the origin with
forty-five degree slope, such a dip cannot be detected for an easy item even if it exists, as far as we use
the item-test regression as an approximation. It is quite possible, therefore, that there are more than
one item among those items that have such dips; only they were not detected.

In the past years various sets of data based upon the Vocabulary Subtest of the Iowa Tests of Basic 3
Skills, upon Shiba's Word/Phrase Comprehension Tests, ASVAB Tests of Word Knowledge and of Math
Knowledge, etc., have been analyzed by using, mainly, the Simple Sum Procedure of the Conditional
P.D.F. Approach combined with the Normal Approach Method (cf. Samejima, 1981b).These tests
consist of multiple-choice test items, with four or five alternative answers in each item. As the result,
we have discovered non-monotonic operating characteristics of the correct answer for some of the items,

as well as differential information coming from the estimae*.d operating characteristics of the incorrect
alternative answers, which are called plausibility functions.

Such discoveries of non-monotonic operating characteristics can best be accomplished by using a
nonparametric approach to the estimation of the operating characteristics. After the operating charac-
teristics have been discovered by using the nonparametric approach, however, it may be wise to search
for mathematical models that fit the results, and to estimate item parameters accordingly, so that we
shall be able to take advantage of the mathematical simplicity coming from the parameterization.

References

[1] Lord, F. M. and Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison- I
Wesley, 1968.

12] Samejima, F. Application of the graded response model to the nominal response and multiple-

choice situations. UNC Psychometric Laboratory Report, 63, 1968.

[3] Samejima, F. A general model for free-response data. Psychometrika Monograph, No. 18, 1972.

[4] Samejima, F. Effects of individual optimization in setting boundaries of dichotomous items on
accuracy of estimation. Applied Psychological Measurement, 1, 1977a, 77-94.

[5] Samejima, F. A use of the information function in tailored testing. Applied Psychological Measure-

ment, 1, 1977b, 233-247.

[6] Samejima, F. Estimation of the operating characteristics of item response categories 1: Introduction
to the Two-Parameter Beta Method. ONR/RR-77-1, 1977c.

[71 Samejima, F. Estimation of the operating characteristics of item response categories II: Further 3
development of the Two-Parameter Beta Method. ONR/RR-78-1, 1978a.

[81 Samejima, F. Estimation of the operating characteristics of item response categories III: The
Normal Approach Method and the Pearson System Method. ONR/RR-78-2, 1978b. I

[9] Samejima, F. Estimation of the operating characteristics of item response categories IV: Conpar-
ison of the different methods. ONR/RR-78-3, 1978c.

[10] Samejima, F. Estimation of the operating characteristics of item response categories V: Weighted I
Sum Procedure in the Conditional P.D.F. Approach. ONR/RR-78-4, 1978d.

[11] Samejima, F. Estimation of the operating characteristics of item response categories VI: Propor-
tioned Sum Procedure in the Conditional P.D.F. Approach. ONR/RR-78-5, 1978e. I

[121 Samejima, F. E.timation of the operating characteristics of item response categories VII: Bivariate
P.D.F. Approach with Normal Approach Method. ONR/RR-78-6, 1978f.

[13] Samejima, F. Estimation of the operating characteristics when the test information of the Old I
Test is not constant I: Rationale. ONR/RR.80-2, 1980a.

I
8!



[14] Samejima, F. Estimation of the operating characteristics when the test information of the Old
Test is not constant II: Simple Sum Procedure of the Conditional P.D.F. Approach/Normal
Approach Method using three subtests of the Old Test. ONR/RR-80-4, 1980b.

[15] Samejima, F. Estimation of the operating characteristics when the test information of the Old
Test is not constant II: Simple Sum Procedure of the Conditional P.D.F. Approach/Normal
Approach Method using three subtests of the Old Test, No. 2. ONR/RR-81-2, 1981a.

[16] Samejima, F. Final Report: Efficient methods of estimating the operating characteristics of item
response categories and challenge to a new model for the multiple-choice item. Final Report of
N00014-77-C-0360, Office of Naval Research, 1981b.

[17] Samejima, F. Final Report: Advancement of latent trait theory. Final Report of N00014-81-C-
0569, Office of Naval Research, 1988.

[18] Samejima, F. and Changas, P. S. How small the number of test items can be for the basis
of estimating the operating characteristics of the discrete responses to unknown test items.
ONR/RR-81-3, 1981.

[19] Samejima, F. and Livingston, P. S. Method of moments as the least squares solution for fitting a
polynomial. ONR/RR-79-2, 1979.

III Proposal of Two Modification Formulae of the Test Infor-

mation Function

Although the reciprocal of the test information function 1(9) provides us with a minimum variance
bound for any unbiased estimator of 0 (cf. Kendall and Stuart, 1961), since the maximum likelihood
estimate, which is denoted by jv , is only asymptotically unbiased, for a finite number of items we
need to examine if the bias of jv of a given test over the meaningful eange of 9 is practically nil,
before we consider this reciprocal as a minimum variance bound. It has been shown (Samejima, 1977a,
1977b) that in many cases the conditional distribution of 9v , given 0 , converges to N(9, [1(0)]-1/2)
relatively quickly. On the other hand, we have also noticed that the speed of convergence is not the same
even if the amount of test information is kept equal. This has been demonstrated by using Constant
Information Model (Samejima, 1979a), which is represented by

(3.1) P,(0) = sin 2 [a,(0 - bg) + (ir/4)]

where, as before, P,(9) denotes the operating characteristic of the correct answer, and a, (> 0) and
b. are the item discrimination and difficulty parameters, respectively. This model provides us with a
constant amount of item information 1,,(9) which equals 4a' for the interval of 9

(3.2) - lr[4a[]-' + bg < 0 < ir[4ag-' + 6,

(cf. Samejima, 1979b).

Thus two modification formulae of the test information function 1(0) have been proposed in the

present research in order to provide better measures of local accuracies of the estimation of 0 , when
the maximum likelihood estimation is used. They start from the search for a minimum variance bound,

and from a minimum bound of the mean squared error, of any estimator, biased or unbiased.
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[III.1] Minimum Variance Bound
Let 0 denote any estimator of 6 . We can write in general 3

(3.3) E(6 [6) = e + E(e. -e)1] . I

When the item responses are discrete, we have

(3.4) E(O 16) =Z 6 Lv(0) Z 6, Pv(0) ,
V V

where Lv (0) denotes the likelihood function. Differentiating both sides of (3.4) with respect to 0 3
we obtain

(3.5) TE(., [6) O 6 Pv ( 1 [* J(0) 1
V V

- [0; - E(6, 10)] ' e R/(0I
V

We can write 3
(3.6) PV (0) [7 log/V (0)] Pv (9)06

and using this we can rewrite (3.5) into the form

(3.7) - E(. 106) = Z: [0; - E(. 106)] 1['9log N (0)) Pv (0).
V

From this result, by the Cram6r-Rao inequality, we obtain I
(3.8) a E(0; 10)1' < Var.(O; 10) El{9logPV(0)}a l l

Since we can write

(3.9) Ef{ 9logLv(0))2 10- l 0 logLv 0) 10]

from this, (2.7), (2.8) and (3.3) we can rewrite and rearrange the inequality (3.8) into the form f
(3.10) Var.(#, 10)> a E(O, 10)]2u 1()]-' = [1 + -E(O - 0 10)]21 [1(0)]-'

whose rightest hand side provides us with the minimum variance bound of the conditional distribution
of any estimator e . When eO, is biased, the size of the minimum variance bound is determined by
the second term of the first factor of the minimum bound, and the result can be greater or less than
the reciprocal of the test information function depending upon the sign of this partial derivative.
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[III.21 First Modified Test Information Function
Lord has proposed a bias function for the maximum likelihood estimate of 6 in the three-parameter

logistic model whose operating characteristic of the correct answer, P,(6 ) , is given by

1 (3.11) Pg(8) = cg + (1 - c.)[1 + exp{-Dag(6 - bg)}]- l ,

where a. , bg , and cg are the item discrimination, difficulty, and guessing parameters, and D is a
scaling factor, which is set equal to 1.7 when the logistic model is used as a substitute for the normal
ogive model. Lord's bias function B(jv i 6) can be written as

(3.12) B(jv I 0) = D[I(6) - 2 ,_ a(6)]tk9(6) -

where 

g=1

3 (3.13) Pkg() = [1+exp{-Dag(8-b)}]
-1

(cf. Lord, 1983). We can see in the above formula of the MLE bias function that the bias should be
negative when tg(6) is less than 0.5 for all the items, which is necessarily the case for lower values of
6 , and should be positive when 0,(0) is greater than 0.5 for all the items, i.e., for higher values of
0 , and in between the bias tends to be close to zero, for the last factor in the formula assumes negative
values for some items and positive values for some others, provided that the difficulty parameter bg
distributes widely.

In the general case of discrete item responses, we obtain for the bias function of the maximum
likelihood estimate (cf. Samejima, 1987)

(3.14) B(jv 10) = Ejv -0 1 0 = -(1/2)1I(6)] - 2  Ak,(O)P"(6)
g=1 kg

- -(1/2)1I()- 2 ZZ P (6)P;'(6)1Pk,(O)] "'

g=1 k,

where Ak,(0) is the basic function for the discrete item response kg , and Pk, (6) and P,,' (6) denote
the first and second partial derivatives of Pkg(O) with respect to 0 , respectively. On the graded
response level where item score xg assumes successive integers, 0 through m. , each k, in the
above formula must be replaced by the graded item score xg (cf. Samejima, 1969, 1972). On the
dichotomous response level, it can be reduced to the form

n

(3.15) B(§v 60) = Ejev - I 6] = (-1/2)[I(0) - 2 Z Ig(e)Pg'(6)[Pj(6)]-' ,
g=i

with PgC() and P.'(0) indicating the first and second partial derivatives of P,(6) with respect to
6 , respectively. This formula includes Lord's bias function in the three-parameter logistic model as a
special case.

We can rewrite the inequality (3.10) for the maximum likelihood estimate ;v

11



(3.16) Var.(9v 10) _ [1 + a B(§v 19)12 [I(0)1 - 1

Taking the reciprocal of the right hand side of (3.16), which is an approximate minimum variance bound
of the maximum likelihood estimator, a modified test information function, T(O) , is proposed by

(3.17) T(O) = 1(0) [1 + +9 B(Ov 10)1- 2

From this formula, we can see that the relationship between this new function and the original test

information function depends upon the first derivative of the MLE bias function. If the derivative is

positive, then the new function will assume a lesser value than the original test information function;

if it is negative, then this relationship will be reversed; if it is zero, i.e., if the MLE is unbiased, then

these two functions will assume the same value. We can write from (3.14) for the general form of the

derivative of the MLE bias function

(3.18) aB(0v 18)

(, (0)P",() - P ,, (0 k (v1)PO
a~l kg(9)Pi 'q (9) - P, (9)Ptk(O){Pk,(O)}- 2B(9v I 6)I'(9),
g=i kg'

where Pk .(0) and I'(O) denote the third and the first derivatives of Pk,(0) and 1(0) with respect
to 9 , respectively. It is obvious from (2.3) and (2.8) that we have

(3.19) Ik() = { P,(O)[P'g(9)(Pk,(0)}-1 - (0)

kg

and

n n

(3.20) F,(9 'g3I(9 PJkg(O)[Pk,'(){Pk,(O)} 1 k, k(0) 1

where Ig(0) is the first derivative of the item information function I,(0) with respect to 9 . For a

set of dichotomous items (3.18) becomes simplified into the form

n

(3.21) a-B(jv 1 0) = {I()}-'[(1/2){I()
1 {P,()}-2 {1 - P()

- 2

U=1
(p 0)2p1O pt po() p" t p )p' 0)({1 - 2Pa(9)}{PO(o)}2 P; (9) - Pg(){1 - Pg(0)}({P"(9)}2

- 2B(jv I) 1'(o)1,

where B(Ov 1 0) is given by (3.15). !

[111.3] Minimum Bound of the Mean Squared Error

When the estimator 0 , is conditionally biased, however small the conditional variance may be, it

does not reflect the accuracy of estimation of 0 . Thus the mean squared error, E(9 , - 0),2 1 ]
becomes a more important indicator of the accuracy. W- can write for the mean squared error I

12



(3.22) E[(O - 0)2 1I = Var.(O i0) + [E(O, 19) - 9]2

(cf. Kendall and Stuart, 1961). We can see in this formula that the mean squared error equals the
conditional variance if O is unbiased, and is greater than the variance when O is biased. From this
and the inequality (3.10) we obtain for the minimum bound of the mean squared error

(3.23) E[(9;. - 0)2 1 1 [1 + a-E( - 0 19)12 [I(e)J- 1 + [E(9 *I 9) - OJ2

Note that this inequality holds for any estimator, 0;, , of 9

[111.4] Second Modified Test Information Function

For the maximum likelihood estimate 0 v , we can rewrite the inequality (3.23) by using the MLE
bias function, which is given by (3.14), to obtain

(3.24) E(v _ )2 1 9] [1 + a B( v 1 e)12 [I(0)-' + [B(v 10)]2

Taking the reciprocal of the right hand side of (3.24), which is an approximate minimum bound of
the mean squared error of the maximum likelihood estimator, the second modified test information

function, E(e) , is proposed by

(3.25) S(O) = 1() ([1 + a I e)J2 + 1(0) IB(jv 1)12 }- 1

We can see that the difference between the two modification formulae of the test information function,
which are defined by (3.17) and (3.25), respectively, is the second and last term in the braces of the

right hand side of the formula (3.25). Since this term is nonnegative, there is a relationship

(3.26) E(O) < T(O) ,

throughout the whole range of 9 , regardless of the slope of the MLE bias function. If there is a range
of 0 where the maximum likelihood estimate is unbiased, then we will have for that range of 0

(3.27) E2() = T(O) = 1(0) .

Since under a general condition the maximum likelihood estimator jv is asymptotically unbiased, as
the number of items approaches positive infinity, (3.27) holds asymptotically for all 9

[111.5] Examples

Samejima has applied formula (3.15) for the MLE bias functions of the Iowa Level 11 Vocabulary
Subtest and Shiba's Test J1 of Word/Phrase Comprehension, based upon the set of data collected for
2,356 and 2,259 subjects, respectively. These tests have forty-three and fifty-five dichotomously
scored items, respectively, and following the normal ogive model, whose operating characteristic for the
correct answer is given by

13
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FIGURE 3-1 THETA

MLE Bias Functions of the Iowa Level 11 Vccabulary Subtest (Solid Line) and of Shiba's
Test J1 of Word/Phrase Comprehension (Dashed Line), Following the Normal

Ogive Model.

(3.28) Pg(e) = 12,r] -'/2J f - ' /2 du,

the discrimination and difficulty parameters were estimated (Samejima, 1984a, 1984b). The resulting I
MLE bias functions are illustrated in Figure 3-1. We can see that in each of these two examples there
is a wide range of 0 , i.e., approximately (-2.0, 1.5), for which the maximum likelihood estimate of
0 is practically unbiased. The amount of bias is especially small for Shiba's Test J1. Although this
feature indicates good qualities of these tests, we still have to expect some biases when these tests are
administered to groups of examinees whose ability distributes on the relatively lower side or on the
relatively higher side of the ability scale. 5

When the MLE bias function of the test is monotone increasing, as are those illustrated in Figure 3-1,
it is obvious from (3.17) that T(O) will assume lesser values than those of the original test information
function 1(0) for lower and higher levels of 0 , while these two functions are practically identical in I
between. The same applies to -(O) , and we have the relationship,

(3.29) E(8) _< T(O) _ 1(0) ,

throughout the whole range of 0 .

In the normal ogive model, differentiating (3.28) twice with respect to 0 and rearranging, we obtain U
(3.30) Pg(e) = j21r]- 2 a exp[-(1/2) a (0 - bg) 2)

and

14



(3.31) P,'(0) = -a2(O - bl) P9(0)

Substituting (3.30) and (3.31) into (3.15) and rearranging, we can write for the MLE bias function
following the normal ogive model on the dichotomous response level

n

(3.32) B(9v 10) = (1/2) [l(0)]-2 a2(e - b) Ig (0)
g=I

Differentiating (3.32) with respect to 0 , we obtain

n

(3.33) 19B(O v 10) = [(0)]-2[(1/2) a2 [1,(0)(9 - b) + 1, (0)

g=1

n

-j(o)] -' I'[() a2(0 - bg) I,(0).
g1=1

It is obvious from (2.4), (2.8) and (3.31) that we have

(3.34) I',(0) 19(0) [Pg(0) {2Pg(9) - 1) (P(){1 - Pg()})-' - 2a2(0 - b) ]

and

(3.35) 1'(0) 4I(O) [Py(O) {2P,(O) - 1} (Pg(9){1 - P,()})-' - 2ag(6 - bh).
g=1

Figure 3-2 shows the square roots of the original and the two modified test information functions

for the Iowa Level 11 Vocabulary Subtest and for Shiba's Test J1 of Word/Phrase Comprehension,

following the normal ogive model. In each of these figures, the curves respresenting the results of the

two modification formulae assume lower values than the square root of the original test information

function for all 0 , as was expected from the shape of the MLE bias function in Figure 3-1. The
discrepancies between the results of the two modification formulae are small, however, in each figure.

In the three-parameter logistic model, the operating characteristic of the correct answer is given by

the formula (3.11), and Lord's MLE bias function for the three-parameter logistic model, which is given

by (3.12), is readily applicable. Differentiating (3.11) three times with respect to 0 and rearranging,
we can write

(3.36) P,,(0) = (1 - c.) Da. 0, (0) (1-P,(0)-

(3.37) P'(0) = (1- c) D2 a2 Og(0) [1- g(0)] [1- 20g(0)] = Da, P,(0)[1 -20,(O)

and

(3.38) P" (0) = D2 a2p 6() 11- 6{kg(0) +,
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where Og(O) is defined by (3.13). Substituting (3.36) into (2.4) and rearranging, we obtain for the
item information function

(3.39) Ig(9) (1- c.) D2 a {,()2 [1 - kg(O)l [cg + (1 - cg)

This and (2.8) will enable us to evaluate Lord's MLE bias function given by (3.12). Differentiating
(3.12) with respect to 0 and rearranging, we can write

(3.40) -B(v 0) D {I()}-2[Z a[ / (9){tk(9) -(1/2)}

g~l

D fg() g0 (){1- _k(0)}
g=1

- 2 I'(O) {I()} - E ag Ig(0) { Og(0) - (1/2)1
g= I

We also obtain from (2.4), (3.11) and (2.8) the first derivatives of the item and the test information
functions with respect to 8 so that we have

(3.41) 1,(0) = (1 - cg) D3 a' {4,k(O)}2 11 - Og(O)] {Pg()} ) '

[2 - 3t0,(8) - (1 - c,) P,(0)(1 - 0,(0)1(Pg(0)

= Dag Ig(9) [2{1 - OU(9)} - Og(O){Pu(O)} - ' ]

and

(3.42) I'(O) = D > ag Ig(O) [2{1 - Pg(O)} - iO)g()(Pg(O)}'- ,
g=

1

and we can use these two results in (3.40) in order to evaluate - B(Ov 1)

When cg = 0 , i.e., for the original logistic model on the dichotomous response level, these formulae
become much more simplified, and we can write

(3.43) P,(O) = [1 + exp{-Da,(9 - bg)}]-' = 0,(0)

(3.44) P (O) = Dag Og (8) [1 - Og (0),

(3.45) P," (9) = D 2 a 2,(6) [1 - 0,(O)j [I - 20g(O)l = Da, P,(0)[I - 2,(9)l

(3.46) P1"(0) = D3 a3 kg (9) 11 - kg (0)j [1 - 6?kg(0) + 6{?k(,)} 2J ,

(3.47) I -(-) = D ,(0) [i - ¢g(O),
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FIGURE 3-3 1
MLE Bias Functions of the Hypothetical Test of Thirty-Five Graded Test Items Following

the Normal Ogive Model (Solid Line) and the Logistic Model (Dashed Line). I

(3.48) Ig'(0) = D3 a3 Og(O)[1 - 0,(()1I1 - 20g(O) = D a. 1,(9) [1 - 20g(9)l

(3.49) 1(0)= D a. ¢0(() [1- 3
g=1

and5

(3.50) I'(0) = D a9 Ig() 11 - 20(O).
g=l

respectively. Thus the two modified test information functions, T(O) and E(0) , which are defined
by (3.17) and (3.25), can be evaluated accordingly, both for the original logistic model and for the
three-parameter logistic model. £

The reader is directed to ONR/RR-90-1 (cf. Samejima, 1990) for the MLE bias functions and
the square roots of the original and the two modified test information functions of the Iowa Level 11
Vocabulary Subtest and of Shiba's Test J1 of Word/Phrase Comprehension, following the logistic model I
by using the same sets of estimated item parameters and by setting D = 1.7 . These results are similar
to those following the normal ogive model, which are presented by Figures 3-1 and 3-2, except that
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the square roots of the original and the modified test information functions are a little steeper, the3 characteristic of the logistic model in comparison with the normal ogive model.

In the homogeneous case of the graded response level (Samejima, 1969, 1972), the general formula
for the operating characteristic of the item score x, (= 0,1, ... , ing) is given by

(3.51) P.,(O) = P; () - P;,+ 1(0)

I where

3 (3.52) P,() = fdt,
1 (3.53) - oo = b0 < bl < 6 2 < ... < bg < bg+l = oo,

and Og(t) is some specified density function. When we replace the right hand side of (3.52) by that of
(3.28) with bg replaced by b.. and use the result in (3.51), we have the operating characteristic of

0x in the normal ogive model on the graded response level; when we do the same thing using the right
hand side of (3.13), we obtain the operating characteristic of xg in the logistic model on the graded
response level.

I A hypothetical test of thirty-five graded items, with three graded score categories each, which gives
an approximately constant amount of test information for the interval of 9 , (-3, 3), has been used
repeatedly in the author's research (cf. Samajima, 1981, 1988). Figure 3-3 presents the MLE bias
fur.ctions for this hypothetical test, following the normal ogive model and the logistic model on the
graded response level, respectively. We can see that a practical unbiasedness holds for a very wide
range of 0 in both cases, as is expected for a set of graded test items whose response difficulty levels
are widely distributed, an advantage of graded responses over dichotomous responses. We also notice

that these two MLE bias functions are almost indistinguishable from each other. Figure 3-4 presents the
square roots of the original and the two modified test information functions of this hypothetical test of
graded items, following the normal ogive model and the logistic model. As is expected, the differences
among the three functions are small for a wide range of 0 in both cases. It is interesting to note,
however, that in these figures the square roots of the modified test information functions assume higher
values than the square root of the original test information function at certain points of 0 , and this
tendency is especially conspicuous in the results of the logistic model. This comes from the fact that

the MLE bias functiops, which are presented in Figure 3-3 for both models, have tiny ups and downs,
and they are not strictly increasing in 0.

In each of the examples given above, the difficulty parameters of these items in each test distribute
widely over the range of 0 of interest, and this fact is the main reason that the MLE bias functioin
assumes relatively small values for a wide range of 0 . We also notice that the resulting two modified
test information functions are reasonably close to the original test information function.

For the sake of comparison, Figure 3-5 presents the MLE bias function and the square roots of the
original and the two modified test information functions, for a hypothetical test of thirty equivalent,
dichotomous :tems with the common item parameters, a, = 1.0 and b,, = 0.0 , following the logistic

model. We can see in the first graph of Figure 3-5 that the amount of bias increases rapidly outside
the range of 0 , (-1.0,1.0) . The resulting square roots of the two modified test information functions
demonstrate substantially large decrements from the original I[(9)l1/2 outside this interval of 0 , as

we can see in the second graph of Figure 3-5.

We also notice that in all these examples there are not substantial differences between the results

of the two modification formulae. This indicates that in these examples it does not make so much
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difference if we choose Modification Formula No. 1 or Modification Formula No. 2. We should not
generalize this conclusion to other situations, however, until we have tried these modification formulae
on different types of data sets.

[111.6] Minimum Bounds of Variance and Mean Squared Error for the
Transformed Latent Variable

Since most psychological scales, including those in latent trait models, are subject to monotone
transformation, we need to consider information functions that are based upon the transfomed latent
variable. Let r denote a transformed latent variable, i.e.,

(3.54) r = r(9)

We assume that r is strictly increasing in, and three times differentiable with respect to, 0 , and vice
versa. We have for the operating characteristic, P g(r) , of the discrete item response kg, which is
defined as a function of r ,

(3.55) P;,(r) = prob.[kg I r] = prob.kg 10] = Pk,(0)

and by local independence we can write for the operating characteristic of the response pattern, P (r) ,

(3.56) P (r) = H Pk,(r) = H Pk, (O) = Pv(O)
kEV k, W

As before, the item response information function, I;g (r) , is defined by

(3.57) ;(r) =- a2  logP;g(r)

and for the item information function, I* (r) , and the test information function, P (r) , we can write
from (3.57), (2.3) and (2.8)

(3.58) 1 (r) = 1,(r) P;(r) = Z t-P;t(r) 12 [P;'(r)l - I
k' k,

- 1 'Pk, (0) "' J2 [Pk,(0)] = () -1 (0) 23

and

(3.59) P~r Z1; 1(0) 1 -I2arg=l

respectively. Let r. be any estimator of r , which may be biased or unbiased. In general, we can
write

(3.60) E(r, I r) = r + E(r. - r I r)

and, differentiating (3.60) with respect to 0 , we obtain
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(3.61) a E(r, Ir) = (- a E(r, - r I r)

Since from (3.56) we can also write for E(r, Ir)

(3.62) E(r, r) = E r P (r) = Z r, Pv(0)
SV V

differentiating (3.62) with respect to 0 and following a logic similar to that used in Section 3.1, we
obtain

a
(3.63) E(, I = r) 'r Pv(0) = J[r - E(r I T)f Pv(0)

- [$ - E(r Ir)] [9logPv(0) P( ()

By the Cramer-Rao inequality, we can write

3 (3.64) [a-JE(r I r)]2 < Var.(r I r) E[{ (9logPv()}2 ],

3 and from this, (2.7), (2.8), (3.10) and (3.61) we obtain

(3.65) Var.(r I r) 9 [E(r I )]' [I(o )]- '
863= +a+ E(. - I r)] [()]-'

I Thus the rightest hand side of (3.65) provides us with the minimum variance bound of any, estimator of
r . When r is an unbiased estimator of r , the second term of the first factor of the rightest hand3 side of (3.65) equals zero, and by virtue of (3.59) the inequality is reduced to

(3.66) Var.(r I r) [IJ [I(6)1-' -[I(r)]-'

For the mean squared error, E[(re - r) 2 Ir , we can write

(3.67) E[(r _ r)2 I l = Var.(r I r) + [E(r. I r) - r12

and from this and (3.65) we obtain

(3.68) E ~r ,-r)2 ar] >_ [ + aE(r - r [I(0)-' + {E(r. I r) -r2
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[111.7] Modified Test Information Functions Based upon the Transformed
Latent Variable 3

The maximum likelihood estimator, k , of r , can be obtained by the direct transformation of the
maximum likelihood estimate, 9v , of 9 , i.e., I
(3.69) f = v

Let B*(fv I r) be the MLE bias function defined for the transformed latent variable r, i.e., I
(3.70) B*(fv I-) = E(iv - r -) . 3
From this, (3.65) and (3.68) we obtain

(3.71) Var.(fv I r) > '3 3B(f I r)][I(0)1'

andI
Or a

(3.72) EI(v - -r)2 ] -] j (90 + yB*(k I r)21I()1-1 + IB*(fv I T)12

The reciprocals of the right hand sides of the above two inequalities provide us with the two modified
test information functions for the transformed latent variable r- , i.e.,

(3.73) T*(r) = 1() [ - + a B*(fv 2

and a r~ ~ 3 + +B*( (f I r) 1 J){B (
and 5
(3.74) _1(r) R 9) I )}

In the general case of discrete item responses we can write for the MLE bias function B* (i. r)
and its derivative with respect to 9 3
(3.75) B*(k Ir) = B(Ov 1 )[ a -  -0 -3 20 2

ar ar aT

B(j, 10) a- + (1/2)[i(0)I-'a r

and 3

(3.76) B*(v I r) = B(0v 0) + [+_B(v I 0)]

33r 32 r~)ar
+ (1/2)[I(0)j-

2 [() 3- '() 8

respectively (cf. Samejima, 1987). Thus we can use (3.75) and (3.76) in evaluating the modified test
information functions, T*(r) and -.*(r) , which are given by (3.73) and (3.74).
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[111.8] Discussion and Conclusions

A minimum bound of any estimator, biased or unbiased, has been considered, and, based on that,
Modification Formula No. 1 has been proposed for the maximum likelihood estimator, in place of the
test information function. A minimum bound of the mean squared error of any estimator has also been
considered, and, based on that, Modification Formula No. 2 in the same context has been proposed.
Examples have been given. These topics have also been discussed and observed for the monotonically
transformed latent variable.

It is expected that these two modification formulae of the test information function can effectively
be used in order to supplement a relative weakness of the test information function in certain situations.
Results are yet to come.
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IV Reliability Coefficient and Standard Error of Measure-
ment in Classical Mental Test Theory Predicted in the 3
Context of Latent Trait Models

By virtue of the population-free characteristic of the test information function 1(0), adding further 3
information about the MLE bias function of the test and the ability distribution of the examinee group,
we can provide the tailored reliability coefficient and standard error of measurement in the sense of

classical mental test theory for each and every specified group of examinees who have taken the same

test (cf. Samejima, 1977b, 1987)! This is further facilitated by the proposal of the modifications of the
test information function, which use the MLE bias function (cf. Samejima, 1987, 1990), and have been

introduced in the preceding chapter. I

Thus now we are in the position to predict the so-called reliability coefficient and standard error
of measurement of a test in the sense of classical mental test theory, taking advantage of the new

developments in latent trait models, which are tailored for a specific population of examinees. It will be
shown in this chapter how we can do that.

[IV.1] General Case

Let O6. be any estimator of ability 0 .We can write

(4.1) * = +3

where e denotes the error variable. In the test-retest situation, we have

(4.2) j 2 = 0 + 2

where the subscripts, I and 2, indicate the test and retest situations, respectively. If we can reasonably

assume that in the test and retest situations:

(4.3) Cov.(6i, 2 ) = 0 ,

(4.4) Var.(ci) = Var.(62 )

and

(4.5) Cov.(Oi,) = Cov.(Oe 2 ) =0

then we will have

(4.6) Corr.(O61,O 2 ) = [Var.(O6. 1 ) - Var,(ei)][Var.(0j',)-'

Note that if we replace ability 0 by the true test score T , a transformed form of 0 specific to a given
test, and use the observed test score X as the estimator of T, and E as its error of estimation, then

(4.1) can be rewritten in the form
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(4.7) X-T+E

which represents the fundamental assumption in classical mental test theory, and (4.6) becomes a

familiar formula for the reliability coefficient rxx, ,

(4.8) rx,x, = Var.(T)[Var.(X)1'-

In classical mental test theory, however, researchers seldom check if these assumptions are acceptable.

In fact, in many cases (4.5) is violated if we replace 0 by T , and el and C2 by El and E 2 ,

respectively, unless the test has been constructed in such a way that most individuals from the target

population have mediocre true scores.

We can write in general

(4.9) Var.(c) = E[c- E(e)]'

= Efe- E(e 10)12 + EE(e I ) - E(e)] 2

+ 2EI(c - E(e I 0))(E(c 10) - E(e)).

This indicates that, if the error variable e is conditionally unbiased for the interval of 0 of interest,
then (4.9) will be reduced to the form

(4.10) Var.(c) = E[ .2

[IV.2] Reliability Coefficient of a Test in the Sense of Classical Mental
Test Theory When the Maximum Likelihood Estimator of 0 Is
Used

Let jv or 9 denote the maximum likelihood estimator of 0 based upon the response pattern

V . If: 1) § is conditionally unbiased for the interval of 0 of interest and 2) the test information

function 1(0) assumes reasonably high values for that interval, then we will be able to approximate the

conditional distribution of j , given 9 , by the normal distribution N(O, [I(0) - /112 ) for the interval
of 0 within which the examinees' ability practically distributes. Thus we have from (4.10)

(4.11) Var.(E) - E[(I(0)}-1l

When this is the case, from (4.6) we can write

(4,12) Corr.(jj,92 ) [ Var.(j 1 ) - Ej{I(0)P-'jVar.(ji)V-'

Thus the reliability coefficient in the sense of classical mental test theory can be predicted by a single

administration of the test, given the test information function I(P) and the ability distribution of the

examinees.
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The appropriateness of the above normal approximation of the conditional distribution of 9 , given
0 , can be examined by the Monte Carlo method (cf. Samejima, 1977a). We also notice that a necessary

condition for this approximation is that j is conditionally unbiased for the interval of 0 of interest.
Thus we can use the MLE bias function, which was introduced in Section 2, for a test for the support
of the approximation. Note that the MLE bias function together with the ability distribution of the

target population also determines whether the assumption described by (4.5) should be accepted.

If the conditional unbiasedness is not supported, i.e., if B(Ov 1 0) does not approximately equal

zero for all values of 0 in the interval of interest, however, then we shall be able to adopt one of the
modified test information functions, T(O) or --(O) . Thus we can rewrite (4.12) into the forms

(4.13) Corr.(&i, 02) = lVar.(jl) - EI{T(9)}-I]]Var.(O,)V-  3
and

(4.14) Corr.(ji,, 2 ) = [Var.(§i) - E[{(6)-1']][Var.(0)j-'

We can decide which of the modified formulae, (4.13) or (4.14), is more appropriate to use in a specified I
situation.

[IV.31 Standard Error of Measurement of a Test in the Sense of Classical I
Mental Test Theory When the Maximum Likelihood Estimator of
0 Is Used

In classical mental test theory, the standard error of estimation of ability is represented by a single

number, which is heavily affected by the degree of heterogeneity of the group of examinees tested,
as is the case with the reliability coefficient. In contrast, in latent trait models, the standard error of

estimation is locally defined, i.e., as a function of ability. It is usually represented by the reciprocal of the
square root of the test information function. Since the test information function does not depend upon
any specific group of examinees, but is a sole property of the test itself, this locally defined standard
error is much more appropriate than the standard error of estimation in classical mental test theory.
Also this function indicates that no test is efficient in ability measurement for the entire range of ability,
and each test provides us with large amounts of information only locally, which makes a perfect sense

to our knowledge. 3
The standard error of measurement of a test tailored for a specific ability distribution is given by

(4.15) S.E. = E[{I(O)}- / 2 1

when the conditions 1) and 2) described in the preceding section are met, and by £
(4.16) S.E.1 = E[{T(0)}-1/21

or I
(4.17) S.E.2 = E[{=()} -

1
/2 ] 3

otherwise.
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FIGURE 4-1

Density Functions of Six Hypothetical Ability Distributions: n(0.0, 1.0),
n(-018, 1.0), n(O.O, 0.5), n(-0.8, 0.5), n(-1.6, 0.5) and n(-2.4, 0.5).

[IV.4] Examples

For the purpose of illustration, six ability distributions are hypothesized, and for a single test
predictions are made for their tailored reliability coefficients and tailored standard errors of measurement
in the sense of classical mental test theory, using (4.12), (4.13), (4.14), (4.15), (4.16) and (4.17). These six
hypothetical ability distributions are normal distributions, i.e., N(0.0, 1.0) , N(-0.8, 1.0) , N(0.0, 0.5),
N(-0.8,0.5) , N(-1.6,0.5) and N(-2.4,0.5) . Figure 4-1 presents the density functions of these six
distributions. The hypothetical test used here is the same one introduced in the preceding chapter,
which consists of thirty equivalent dichotomous items following the logistic model represented by (3.43)
with the common values of parameters, a. = 1.0 and bg = 0.0 , respectively, and with the scaling
factor D set equal to 1.7 . The MLE bias function and the square roots of the test information
function 1(0) and of its two m.,difikation formulae T(O) and E(O) of this test are shown in Figure
3-5 of the preceding chapter.

Tables 4-1 and 4-2 present the resulting predicted reliability coefficients and standard errors of
measurement for the six different ability distributions, respectively. In each table, the mean and the
variance of 0 of each of the six distributions are also given. We can see that these variances are slightly
different from the squares of the second parameters of the normal distributions, i.e., 0.98322 vs.
1.00000 for the populations 1 and 2, and 0.25155 vs. 0.25000 for the populations 3, 4, 5 and 6,
respectively, whereas all of the means are the same as the first parameters of the normal distributions.
These discrepancies in variance come from the fact that we used frequencies for the equally spaced
points of 0 with the step width 0.05 , which are given as integers, in order to approximate the nornm .i
distributions, instead of using the density functions themselves.

As you can see in the first table, the predicted reliability coefficient obtained by (4.12) distributes
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TABLE 4-1

Three Predicted Reliability Coefficients Tailored for Each of the Six Hypothetical Ability
Distributions, Using the Original Test Information Function and Its Two Modification
Formulae. The Indices, 1, 2 and 3, Represent the Original Test Information Function,

Modification Formula No. 1 and Modification Formula No. 2, Respectively. The
Mean and the Variance of 0 for Each Population Are Also Given.

POPULATION RELIABILITY RELIABILITY RELIABILITY MEAN OF VARIANIZE
1 2 3 THETA OF THETA

1 0.89641 0.78053 0.76629 0.00000 0.98322

2 0.82324 0.26479 0.25256 -0.80000 0.98322

3 0.81738 0.80074 0.79920 0.00000 0.25155

4 0.73250 0.66611 0.65589 -0.80000 0.25155

5 0.47715 0.21681 0.20093 -1.60000 0.25155

6 0.20049 0.01182 0.01109 -2.40000 0.25155

TABLE 4-2

Three Predicted Standard Errors of Measurement Tailored for Each of the Six Hypothetical
Ability Distributions, Using the Original Test Information Function and Its Two

Modification Formulae. The Indices, 1, 2 and 3, Represent the Original Test
Information Function, Modification Formula No. 1 and Modification
Formula No. 2, Respectively. The Mean and the Variance of 8 for

Each Population Are Also Given.

POPULATION STAND.ERROR STAND.ERROR STAND.ERROR MEAN OF VARIAN E
1 2 3 THETA OF THETA

1 0.30548 0.37648 0.38514 0.00000 0.98322

2 0.37887 0.64293 0.66397 -0.80000 0.98322

3 0.23521 0.24717 0.24811 0.00000 0.25155

4 0.29172 0.32802 0.33326 -0.80000 0.25155

5 0.48839 0.73440 0.76583 -1.60000 0.25155

6 0.91974 2.76394 2.88922 -2.40000 0.25155
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TABLE 4-3

Three Theoretical Variances of the Maximum Likelihood Estimates of 8 for Each
of the Six Hypothetical Ability Distributions, Using the Original Test Information
Function and Its Two Modification Formulae. The Indices, 1, 2 and 3, Represent

the Original Test Information Function, Modification Formula No. 1 and
Modification Formula No. 2, Respectively. The Mean and the Variance

of 0 for Each Population Are Also Given.

POPULATION VARIANCE VARIANCE VARIANCE MEAN OF VARIANCE

OF MLE 1 OF MLE 2 OF MLE 3 THETA OF THETA

1 1.09684 1.25968 1.28308 0.00000 0.983-2

2 1.19432 3.71324 3.89296 -0.80000 0.98322

3 0.30775 0.31414 0.31475 0.00000 0.251E5

4 0.34341 0.37763 0.38352 -0.80000 0.25155

5 0.52718 1.16023 1.25189 -1.60000 0.25155

6 1.25469 21.28788 22.68190 -2.40000 0.25155

TABLE 4-4

Three Theoretical Error Variances for Each of the Six Hypothetical Ability Distributions,
Using the Original Test Information Function and Its Two Modification Formulae. The

Indices, 1, 2 and 3, Represent the Original Test Information Function, Modification
Formula No. 1 and Modification Formula No. 2, Respectively. The Mean and the

Variance of 9 for Each Population Are Also Given.

POPULATION VARIANCE VARIANCE VARIANCE MEAN OF VARIANCE

OF ERROR 1 OF ERROR 2 OF ERROR 3 THETA OF THETA

1 0.11363 0.27646 0.29987 0.00000 0.98322

2 0.21111 2.73003 2.90974 -0.80000 0.98322

3 0.05620 0.06260 0.06320 0.00000 0.251E'

4 0.09186 0.12609 0.13197 -0.80000 0.25155

5 0.27563 0.90868 1.00034 -1.60000 0.25155

6 1.00314 21.03633 22.43035 -2.40000 0.2515
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TABLE 4-5 3
Reliability Coefficient Computed for Each of the Six Hypothetical Ability Distributions Based
upon the Maximum Likelihood Estimates of the Examinees for Test-Retest Situations Using

a Test of Thirty Equivalent Items Following the Logistic Model with D = 1.7 , a. = 1.0 U
and b. = 0.0 . The Means and Variances of the Two Sessions and the Covariances Are

Also Presented. I
POPULATION RELIABILITY MEAN MEAN VARIANCE VARIANCE COVARIANCE

1 2 1 2 i

1 0.90788 -0.00311 0.00106 1.19069 1.16769 1.07051

2 0.88812 -0.81435 -0.80971 1.07982 1.09703 0.96663

3 0.80724 0.00785 -0.00754 0.33578 0.33443 0.27051

4 0.72334 -0.85777 -0.84349 0.40504 0.39310 0.28863

5 0.55304 -1.68722 -1.67511 0.42299 0.40820 0.22980

6 0.32187 -2.28115 -2.25897 0.21639 0.23189 0.07210 £

widely, i.e., it varies from 0.200 to 0.896 ! The coefficient reduces as the main part of the distribution 5
shifts from a range of 9 where the amount of test information is greater to another range where it is
lesser. The reduction is more conspicuous when the standard deviation of the normal distribution is
smaller. The predicted reliability coefficient obtained by (4.13) using T(8) instead of 1(0) indicates
a substantial reduction from the one obtained by (4.12) for each of the six ability distributions. The
reduction is especially conspicuous for the populations 2 , 5 , and 6 , whose ability distributes on lower
levels of 6 where the discrepancies between 1(0) and T(O) are large. Among the six populations
the predicted reliability coefficient obtained by means of (4.13) varies from 0.012 to 0.781 , showing
and even larger range than that obtained by (4.12). Similar results were obtained for the predicted
reliability coefficient given by (4.14), using E(0) instead of 1(0) . The reliability coefficient varies from
0.011 to 0.766, and within each population the reduction in the value of the reliability coefficient from I
the one obtained by (4.13) is relatively small, as is expected from the second graph of Figure 3-5.

As for the standard error of measurement, we can see in Table 4-2 that similar results were obtained,
only in reversed order, of course. In classical mental test theory, the standard error of measurement I
aE is given by

(4.18) GE = [Var.(X)j1/2 (1 - rxxl1 / 2

where, as before, rx,, indicates the reliability coefficient. Comparison of Table 4-1 and Table 4-2

reveals that there are substantial discrepancies between the values of aE obtained by formula (4.18)
using the tailored reliability coefficients in Table 4-1, which are based upon the maximum likelihood
estimate 9 , in place of rxAx, in (4.18) and the corresponding standard errors of measurement, which
were obtained by formulae (4.15) through (4.17) and presented in Table 4-2. To give some examples,
for Population No. 1 the results of (4.18) are: 0.319 , 0.465 and 0.479 , respectively; for Population
No. 3 they are: 0.214 , 0.224 and 0.225 ; and for Population No. 6 they are: 0.448 , 0.499 and
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0.499 . These results are understandable, for the degree of violation from the assumptions behind the
classical mental test theory is different for the separate ability distributions.

The three theoretical variances of the maximum likelihood estimate of 0 and the three theoretical
error variances are presented in Tables 4-3 and 4-4, respectively, for each of the six hypothetical pop-
ulations. The latter were obtained by (4.11) and by replacing 1(0) in (4.11) by T(O) and E(g)
respectively, and the former are the sum of these separate error variances and the variance of 9 .

In order to satisfy our curiosity, a simulation study has been made in such a way that, following
each of the six ability distributions, a group of examinees is hypothesized, and, using the Monte Carlo
method, a response pattern of each hypothetical subject is produced for each of the test and retest
situations. Since our test consists of thirty equivalent dichotomous test items, the simple test score is a
sufficient statistic for the response pattern, and the maximum likelihood estimate of 9 can be obtained
upon this sufficient statistic. The numbers of hypothetical subjects are 1,998 for Populations No. 1
and No. 2, and 2,004 for Populations No. 3, No. 4, No. 5 and No. 6. The correlation coefficient
between the two sets of j 's was computed, and the results are presented in Table 4-5. Comparison of
each of these results with the corresponding three tailored reliability coefficients in Table 4-1 gives the
impression that, overall, these correlation coefficients are higher than the predicted tailored reliability

coefficients. This enhancement comes from the fact that in each distribution there are a certain number
of subjects who obtained negative or positive infinity as j , and we have replaced these negative and
positive infinities by more or less arbitrary values, -2.65 and 2.65 , respectively, in computing the
correlation coefficients. Since in Population No. 3 none of the 2, 004 hypothetical subjects got negative
or positive infinity for their maximum likelihood estimates of 0 in the first session, and only three got
negative infinity and none got positive infinity in the second session, this result, 0.807 , will be the
most trustworthy value. We can see that this value, 0.807 , is less than 0.817 obtained by using the
original test information function 1(0) , and a little greater than 0.801 obtained upon the Modification
Formula No. 1, T(O) . The next most trustworthy value may be 0.723 of Population No. 4, for which
none of the 2, 004 subjects obtained positive infinity as their j 's in each of the two sessions, and 56
and 45 got negative infinity in the first and second sessions, respectively. This value of the correlation
coefficient, 0.723 , is a little less than the predicted reliability coefficient 0.733 obtained upon I(0)
but somewhat greater than 0.666 , which is based upon T(O) , the Modification Formula No. 1-the
artificial enhancement is already visible. The numbers of subjects who obtained negative and positive
infinities in the first session and in the second session are: 56 , 47 , 43 and 49 for Population No.
1; 197 , 4 , 195 and 6 for Population No. 2; 437 , 0 , 399 and 0 for Population No. 5; and
1,143 , 0 , 1,118 and 0 for Population No. 6. We must say that, for these four distributions, the
values of the correlation coefficients in Table 4-5 should not be taken too seriously, for these values are
enhanced because of the involvement of too many substitute values for negative and positive infinities.

[IV.5] Discussion and Conclusions

Test information function 1(0) and its two modification formulae, T(O) and -(O) , have been
used to predict the reliability coefficient and the standard error of measurement which are tailored for
each specific ability distribution. Examples of the prediction have been given and a simulation study
has been conducted and shown for comparison. These examples using equivalent test items have been
rather intentionally chosen to make the differences among the separate ability distributions, and those
among the three predicted indices for each ability distribution, clearly visible.

Since we have more useful and informative measures like the test information function and its two
modified formulae, the reliability coefficient of a test is no longer necessary in nio(hril mental test
theory. And yet it is interesting to know how to predict the coefficient using these funct ios, which are
tailored for each separate population of examinees. in this process, it will become more obvious that
the traditional concept of test reliability is misleading, for without changing the test the coetficient, can
be drastically different if we change tile population of examinees.
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V Validity Measures in the Context of Latent Trait Models I
From the scientific point of view, we need to confirm if a given test indeed measures what it is

supposed to measure, even if we have chosen our items carefully enough in regard to their contents, and I
even if we are equipped with highly sophisticated mathematics.

By virtue of the population-free nature of latent trait theory, we should be able to find some indices
of item validity, and of test validity, which are not affected by the group of examinees. The resulting

indices should not be incidental as those in classical mental test theory are, but truly be attributes of I
the item and the test themselves. Thus an attempt has been made in the present research to obtain
such population-free meaiures of item validity and of test validity, which are basically locally defined. I!
[V.1] Performance Function: Regression of the External Criterion Vari-

able on the Latent Variable

It is assumed that there exists an external criterion variable, which can be measured directly or

indirectly. This is the situation which is also assumed when we deal with criterion-oriented validity or
predictive validity in classical mental test theory. I

Let -y denote the criterion variable, representing the performance in a specific job, etc. We shall
consider the conditional density of the criterion performance, given ability, and denote it by (-y 10) .
The performance function, (O) , can be defined as the regression of -f on 0 , or by taking, say, the
75, 90 or 95 percentile point of each conditional distribution of -Y , given 9 . Let p,, denote the
probability which is large enough to satisfy us as a confidence level. Thus we can write

(5.1) p,. = (- 10) d-1
(0)

where j denotes the least upper bound of the criterion variable -y • 3
Figure 5-1 illustrates the relationships among 0 , -y , p,,, (-y 18) and (O) . It may be reasonable

to assume that the functional relationship between 9 and (O) is relatively simple, not as is illustrated
by the solid line in Figure 5-2, i.e., we do not expect s'(O) to go up and down frequently within a
relatively short range of 9 . We shall assume that (O) is twice differentiable with respect. to .
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In dealing with an additional dimension or dimensions in latent space, i.e., the criterion variable or
variables, one of the most difficult issues is to keep the population-free nature, which is characteristic of
the latent trait models, the main feature that distinguishes the theory from classical mental test theory,
among others. If we consider the projection of the operating characteristic of a discrete item response
on the criterion dimension, for example, then the resulting operating characteristic as a function of -1
has to be incidental, for it has to be affected by the population distribution of 0 .

We need to start from the conditional distribution of -y , given 0 , therefore, which can be conceived
of as being intrinsic in the relationship between the two variables, and independent of the population
distribution of 0 . We assume that 5(O) takes on the same value only at a finite or an enumerable
number of points of 9 . Let P* ( ) be the conditional probability assigned to the discrete response
kg , given " . We can write

(5.2) Pk*(,)= Pk (0)

[V.2] When (O) Is Strictly Increasing in 0 Simplest Case

The simplest case is that 5(O) is strictly increasing in 0 . In this case, (0) has a one-to-one
correspondence with 9 , and (5.2) becomes simplified into the form

(5.3) P ,( ) = P;, k(0)1 = Pk,(0) .

If, in addition, {0/Ola5} is finite throughout the entire range of 0 , then we obtain

(5.4) P, P, (0)

Let I Z () be the item response information function defined as a function of f . We can write

a
2  

a aa3(5.5) IZ(s) 2 logP,() = -- [{ (-logPk,()} 9

aO 2 a 'a2-0
1k,(0) ('a) - k()] Pk,(0) 1  a-

Let I, ( ) and l*( ) be the amounts of information given by a single item g and by the total
test, respectively, for a fixed value of q. Then we have from (2.3), (2.8) and (5.5)

( 5 .6 ) 1 ,* ) E l t ¢[ 1 ] = I ; ( ) ( = T 0 -q

and

(5.7) E) () = 1(0) ( a )2
gl I 1)

If we take the square roots of these two information functions defined for q then we obtain

(5.8) '; ] 2  
- = [ (9)J1/2  a--
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and

(5.9) -

Since a certain constant nature exists for the square root of the item information function while the
same is not true with the original item information function (cf. Samejima, 1979, 1982), I,( )1I/2
given by (5.8) instead of the original function given by (5.6) may be more useful in some occasions.
This will be discussed later in this section, when the validity in selection plus classification is discussed.

Suppose that we have a critical value, '0 , of the criterion variable, which is needed for succeeding
in a specified job, and that we try to accept applicants whose values of the criterion variable are yo
or greater. If our primary purpose of testing is to make an accurate selection of applicants, then
(5.8) and (5.9) for = -yo , or their squared values shown by (5.6) and (5.7), indicate item and test
validities, respectively. If for some item formula (5.8) or (5.6) assumes a high value at = -yo , then
the standard error of estimation of around = "yo becomes small and chances are slim that we
make misclassifications of the applicants by accepting unqualified persons and rejecting qualified ones,
and the reversed relationship holds when (5.8) or (5.6) assumes a low value at s = -1o . The same logic
applies to the total test by using formula (5.9) or (5.7) instead of (5.8) or (5.6).

It should be noted in (5.8) or in (5.9), that [I('y0)1i 2  or [I*("0)1'/ 2 consists of two factors,

i.e., 1) the square root of the item information function I(0) or that of the test information function
1(0) and 2) the partial derivative of ability 0 with respect to at 5 = -Yo . These two factors in
each formula are independent of each other, i.e., one belongs to the item or to the test and the other
to the statistical relationship between 0 and -y . We also notice that these two factors are in a
supplementary relationship. Thus while it is important to have a large amount of item information, or
of test information, it is even more so to have large values of the derivative, { 9)/89} , in the vicinity
of = "yo , for this will increase the amount of item information defined with respect to uniformly
in that vicinity, and also that of test information, as is obvious from the right hand sides of (5.8) and
(5.9). In other words, it is desirable for the purpose of selection for to increase slowly in 0 in the
vicinity of s = -yo

Since, in general, the same ability 0 has predictabilities for more than one kind of job performance,
or of potential of achievement, the performance function varies for different criterion variables. Note
that neither [I()] 1 /2 nor [I(0)i '/2 is changed even when the criterion variable is switched. Thus,
for a fixed item or test whose amount of information is reasonably large around = "o, the derivative

{0980} in the vicinity of = -yo determines the appropriateness of the use of the item or of the test for
the purpose of selection with respect to a specific job, etc. If this derivative assumes a high value, then
an item or a test which provides us with a medium amount of information may be acceptable for our
purpose of selection, while we will need an item or a test whose amount of information is substantially
larger if the derivative is low. Also for the same criterion variable -y the derivative {39/08} varies for
different values of -yo , so the appropriateness of an item or of a test depends upon our choice of -Y( ,
too. The above logic also applies for the formulae (5.6) and (5.7), i.e., for the case in which we choose
the information functions, instead of their square roots, changing {9/(9} to its squared value.

It is obvious from (5.6) and (5.8) that we can choose either I1 (O('yo)) or ji,( 6(o)) 1
12 for use in

item selection, for their rank orders across different items are identical, and they equal the rank orders
of P (-yo) as well as those of JI; ("o)l ' /2

If we take another standpoint that our purpose of testing is not only to make a right selection of
applicants but also to predict the degree of success in the job for each selected individual, then we will
need to integrate [i({)ii/2 and IP( )si/2 , respectively, since we must estimate accurately not
only around = -yo but also for > -yo . If we choose [/1(;)1/2 and (/(} 1 /2 in preference to
their squared values, we will obtain from (5.8) and (5.9)
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Some Examples of the Relationship between -yo and the Item Validity Measure
Given by (5.10). B

I
(5.10) j[Igs)1/2 d = f g [(0) 1/2 dO

and

(5.11) [1()11/2 d J [1(0)11/2 dO

where fie and fle indicate the domains of f and 6 for which s(O) _ yo , respectively. In this
situation we need to select items which assume high values of (5.10) instead of (5.8), or a test which
provides us with a high value of (5.11) in place of (5.9). Note that formulae (5.10) and (5.11) imply that
we can obtain these two validity measures directly from the original item and test information functions,
respectively, i.e., without actually transforming 0 to f , as long as we can identify the domain fl0
This is true for any criterion variable -y

Some examples illustrating the values of (5.10) are given in Figure 5-3 for hypothetical items. In the
simplest case observed in this section and illustrated in Figures 5-1 and 5-3, these two domains, 1l0
and fl; , are provided by the two intervals, (0 , oo ) and (7o , ) 1 where

(5.12) 60 = bo)

and 7 denotes the least upper bound of -y

It should be noted that the above pair of validity measures depends upon our choice of the critical
value -y . If this value is low, i.e., a specified job does not require high levels of competence with
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respect to the criterion variable -y , then these validity indices assume high values, and vice versa.
It has been pointed out (Samejima, 1979, 1982) that there is a certain constancy in the amount of
information provided by a single test item. To give an example, if an item is dichotomously scored and
has a strictly increasing operating characteristic for success with -. ,j and unity as its two asymptotes,
then the area under the curve for [4(O)]1/2 equals sr , regardless of the mathematical form of the
operating characteristic and its parameter values. We can see, therefore, that if our items belong to this
type then the functional relationship between "yo and the item validity measure given by (5.10) will
be monotone decreasing, with ir and zero as its two asymptotes, for each and every item. Figure 5-4
illustrates this relationship for three hypothetical items of this type. As we can see in this figure, the
appropriateness of the items changes with "yo in an absolute sense, and also relatively to other items
with "1o , and the rank orders of desirability among the items depend upon our choice of - .

We can see from (5.10) that this validity measure necessarily assumes a high value if an item is
difficult, and the same applies to (5.11) for the total test. This implies that these validity measures
alone cannot indicate the desirability of an item and of a test precisely for a specific population of
ezaminees. In selecting items or a test, therefore, it is desirable to take the ability distribution of the
examinees into account, if the information concerning the ability distribution of a target population is
more or less available. In so doing we shall be able to avoid choosing items which are too difficult for
the target population of examinees. Let f(0) denote the density function of the ability distribution
for a specific population of examinees, and f( ) be that of f for the same population. Then we can
write

oae
(5.13) f(W= f(0)

Adopting this as the weight function, from (5.8) and (5.9) we obtain as the validity indices tailored for
a specific population of examinees
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(5.14) [1()11/2 f*s) ds = (O)] I / 2 f(O) dO

and3

(5.15) [[i*( )]1/2 f,( ) d = f [1(0)11/2 f(O) - dO .

Thus by using (5.14) and (5.15) instead of (5.10) and (5.11) we shall be able to make appropriate item
selection and test selection for a target population or sample, provided that the information concerning
its ability distribution is more or less available. Note that, unlike (5.10) and (5.11), formulae (5.14)
and (5.15) imply that these validity measures are also heavily dependent upon the functional formula
of (0).

If we choose to use the area under the curve of the information function instead of that of its square
root, we obtain from (5.6) and (5.7) I
(5.16) , ;(-) de = 9 4(0) 90 dO

ar. d 0

(5.17/) r(P ci = I(0) Ti dO,

respectively. We notice that in this case, unlike those of (5.10) and (5.11), the integrands of the right U
hand sides of (5.16) and (5.17) are no longer independent of the functional formula of (O) . Also when
information about the ability distribution of a target population of examinees is more or less available,
the tailored item and test validity indices become a
(5.18) J I( ) f*( ) de = I(0) f(O) ( )2 dO

and

(5.19) I*( ) f*({) d- = 1(0) f(o) {-a-) dO

respectively, if we choose to use the information functions instead of their square roots.

Note that, unlike the validity measures for selection purposes, in the present situation the rank
orders of validity across different items, or different tests, depend upon the choice of the validity index.
Thus a question is: which of the formulae, (5.10) or (5.16), and (5.11) or (5.17), are better as the
item and the test validity indices for selection plus classification purposes? A similar question is also
addressed with respect to (5.14) and (5.18), and to (5.15) and (5.19). These are tough questions to
answer. While the choice of the square root of the item information function has an advantage of a

certain constancy which has been observed earlier in this subsection, the use of the item information
has a benefit of additivity, i.e., by virtue of (2.8) the sum total of (5.16) over all the item g 's equals
(5.17), and the same relationship holds between (5.18) and (5.19). The answers to these questions are

yet to be searched.

When our purpose of testing is strictly the classification of individuals, as in assigning those people
to different training programs, in guidance, etc., (5.10) and (5.11), or (5.16) and (5.17), also serve as the
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validity measures of an item and of a test, respectively. In this case, we must set yo = -1 in defining the
domains, fQc and fle , where -1 is the greatest lower bound of -1. Thus the two domains, fl, and o ,
in these formulae become those of 5 and 0 for which - < : (O) < . It is obvious that these formulae
provide us with the item and the test validity measures, respectively, for the same reason explained
earlier. The same logic applies for the tailored validity measures provided by (5.14) and (5.15), and
by (5.18) and (5.19), when the information concerning the ability distribution of a target population is
more or less available.

[V.3] Test Validity Measures Obtained from More Accurate Minimum
Variance Bounds

When {a9/a9} = 0 at some value of 6 , as is illustrated by a dashed line in Figure 5-2, {a6/30}
becomes positive infinity, and so does the item validity measure given by (5.8). This fact provides us
with some doubt, for, while we can see that at such a point of item validity is high, we must wonder
if positive infinity is an adequate measure. It is also obvious from (2.8) that the same will happen to the
total test if it includes at least one such item. Our question is: should we search for more meaningful
functions than the item and test information functions? This topic will be discussed in this section.

Necessity of the search for a more accurate measure than the test information function becomes
more urgent when the performance function, (O) , is not strictly increasing in 6 , but is, say, only
piecewise monotone in 0 with finite {08/a9} and differentiable with respect to B , as is illustrated
in Figure 5-5. The illustrated performance function is still simple enough, but indicates the trend that
after a certain point of ability the performance level in a specified job decreases. This can happen when
the job does not provide enough challenge for persons of very high ability levels.
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Since I* ( ) serves as the reciprocal of the conditional variance of the maximum likelihood estimate of
only asymptotically and there exist more accurate minimum variance bounds for any (asymptotically) U

unbiased estimator (cf. Kendall and Stuart, 1961), we can search for more accurate test validity
measures than the one given by (5.9) by using the reciprocal of the square roots of such minimum

variance bounds. 3
Let J,,,(0) be defined as

L (r) (0) L()
(5.20) Jr()= E[V() " 0) 101 r,s=1,2,...,k

where 5
ar ar

(5.21) L()(0) =-Lv(0) = a, (0)

Let J(O) denote the (k x k) matrix of the element Jr,(0) , and J,'(0) be the corresponding element

of its inverse matrix, J-1(0) . Note that when k = 1 we can rewrite (5.20) into the form

(5.22) Jkk(0) = J1 1 (O) = E[{--jologLv(0)}2 10]

= -E[2 log Pv (0) 10],

and from this, (2.7) and (2.8) we can see that J(6) is a (I x 1) matrix whose element is the test

information function, 1(0) , itself. A set of improved minimum variance bounds is given by

(5.23) Ez E (')(0) J'1(0) .(r)(0)

(cf. Kendall and Stuart, 1961), where (')(O) denotes the s-th partial derivative of 5(0 ) with respect
to 0 . We obtain, therefore, for a set of new test validity measures

k k

(5.24) Z Z (o J;'(0(o)) 10")J -
./2 ,

r=1 8=1

where y(') indicates the s-th partial derivative of " with respect to 0 at -Y = m •)

The use of this new test validity measure will ameliorate the problems caused by {35/3} = 0 , if
we choose an appropriate k . T he resulting algorithm will become much more complicated, however,

and we must expect a substantially larger amount of CPU time for computing these measures when k

is greater than unity. Note that (5.24) equals (5.9) when k = 1

[V.4] Multidimensional Latent Space

When our latent space is multidimensional, a generalization of the idea given in Section 5.3 for the

unidimensional latent space can be made straightforwardly. We can write

(5.25) 0= { . }' u = , 2,
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I and the performance function 5(0) becomes a function of q/ independent variables. A minimum
variance bound is given by

3 (5.26) E E a 0V ) IU,'(O)

5 where I-,,'(0) is the (u,v)-th element of the inverse matrix of the (t x ri) symmetric matrix, whose
element is given by

(5.27) 1U(O) = E[ 1 8,,LaL e

with L abbreviating Lv (0) , or Pv (0) . The reciprocal of the square root of (5.27) will provide us
with the counterpart of (5.9) for the multidimensional latent space. For s = 2 , the area fle may look
like one of the contours illustrated in Figure 5-6, depending upon our choice of "1 o , taking the axis for
"7 vertical to the plane defined by 01 and 02 .

In a more complex situation where both ability and the criterion variables are multidimensional, we
must consider the projection of the item information function on the criterion subspace from the ability
subspace, in order to have the item validity function for each item, and then the test validity function.
It is anticipated that we must deal with a higher mathematical complexity in such a case. The situation
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will substantially be simplified, however, if the total set of items consists of several subsets of items,
each of which measures, exclusively, a single ability dimension and a single criterion dimension. 3
[V.51 Discussion and Conclusions

Some considerations have been made concerning the validity of a test and that of a single item.
Effort has been focused upon searching for measures which are population-free, and which will provide
us with local and abundant information just as the information functions do in comparison with the test
reliability coefficient in classical mental test theory. In so doing, validity indices for different purposes 5
of testing and also those which are tailored for a specific population of examinees have been considered.

The above considerations for the item and test validities may be just part of many possible ap-

proaches. We may still have a long way to go before we discover the most useful measures of the item I
and test validities. The present research may stimulate other researchers so that they will pursue this
topic further, taking different approaches.

We notice that the test validity measures proposed in this research can be modified by using one

of the two modification formulae, T(O) and E(9), of the test information function (cf. Chapter 3), in
place of the original 1(0). This will be investigated in the future, when the characteristics of these two

modification formulae have further been investigated and clarified.
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VI Further Investigation of the Nonparametric Approach to
the Estimation of the Operating Characteristics of Dis-
crete Item Responses

In the present research a method has been proposed which increases accuracies of estimation of 5
the operating characteristics of discrete item responses, while pertaining to the two features described
in Section 2.3, and the new procedure has been tested upon dichotomous items. It has proved to be

effective, especially when the true operating characteristic is represented by a steep curve, and also at

the lower and upper ends of the ability distribution where the estimation tends to be inaccurate because
of smaller numbers of subjects involved in the base data. Tentatively, it is called the Differential Weight

Procedure, and it belongs to the Conditional P.D.F. Approach (cf. Chapter 2). This procedure costs
more CPU time than the Simple Sum Procedure, which has been used frequently (cf. Samejima, 1981,

1988), but the advantage of handling more than one item, say, fifty, together in the Conditional P.D.F.
Approach is still there.
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[VI.1] Simple Sum Procedure of the Conditional P.D.F. Approach Com-
bined with the Normal Approach Method

It is obvious from the discussion given in Chapter 2 that the Conditional P.D.F. Approach combined
with the Normal Approach Method is the simplest and one of the most economical procedures in CPU
time. Out of the three procedures of the Conditional P.D F. Approach the Simple Sum Procedure is the
simplest one (cf. Samejima, 1981). For this reason, the combination of the Simple Sum Procedure of
the Conditional P.D.F. Approach and the Normal Approach Method has most frequently been applied
for simulated and empirical data. Fortunately, in spite of the simplicity of the procedure, the results
with simulated data in the adaptive testing situation and with simulated and empirical data in the
paper-and-pencil testing situation indicate that we can estimate the operating characteristics fairly
accurately by using this combination (cf. Samejima, 1981, 1984). This seems to prove the robustness of
the Conditional P.D.F. Approach. For one thing, there is a good reason why Normal Approach Method
works well, for the conditional distribution of 7 , given f , is indeed normal if the (unconditional)
distribution of r is normal, and it is a truncated normal distribution if the (unconditional) distribution
of r is rectangular, and the truncation is negligible for most of the conditional distributions.

In the Simple Sum Procedure of the Conditional P.D.F. Approach, the operating characteristic,
Pk,(O) , of the discrete item response k. of an unknown item g is estimated through the formula

N

(6.1) P,(9) tP[r(0)] = Z 4(r I r,)Z¢(r I
8Ek 9  8=1

where s (= 1,2,..., N) indicates an individual examinee, and 0(r f,) denotes the conditional density
of r , given f, . This conditional density is estimated by using the estimated conditional moments of
r , given f, , using one of the four methods, as was described in Section 2.3.

In the Weighted Sum Procedure of the Conditional P.D.F. Approach, we have for the estimated
operating characteristic of k9

N

(6.2) km = P4[r() W(94Mr I I.,)Iw(94#(r I f*'W
Ek, 0=1

where w(f,) is the weight function of f, . When we combine one of these two approaches with
the Normal Approach Method, 0(r I 9,) in (6.1) or in (6.2) is approximated by the normal density
function, using the first two estimated conditional moments of r , given T, which are given by (2.13)
and (2.14), respectively, as its parameters, pf, and o i , in the formula

(6.3) 0(r I ,.) = [2 ,-ri.ji/ j I-' exp[-(r - j.t)
2/{2oa}I

[VI.2] Differential Weight Procedure

If we accept the approximation of the conditional distribution of f , given r , by the asymptotic
normality, as we do in these approaches (cf. Samejima, 1981), the other conditional distribution, i.e.,
that of r , given f , will become more or less incidental. Thus in the Bivariate P.D.F. Approach
the bivariate distribution of r and 9 is approximated for each separate item score subpopulation of
subjects of each unknown test item. In the Conditional P.D.F. Approach, however, the incidentality
of this second conditional distribution is not rigorously considered, and the implicit assumption exists
such that for the fixed value of f the conditional distributions of r are similar for the different item
score subpopulations.
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Take the dichotomous response level, for example. On this level, each item is scored "right" or
"wrong", "affirmative" or "negative", etc. The above assumption of non-incidentality may be acceptable
when the operating characteristic of the correct answer of the item is represented by a mildly steep curve,
as is the case with most practical situations, and the questions are asked to subjects whose ability levels
are compatible with the difficulty levels of the questions, as is the case with adaptive testing and, though
less rigorously, with many cases of paper-and-pencil testing. I

This assumption is not acceptable, however, when the operating characteristic of the correct answer
is represented by a steep curve. If the operating characteristic follows the Guttman scale, for example,
then the conditional distributions of r , given f , for the two separate item score subpopulations
are distinctly separated, and they do not even overlap! If we use the Simple Sum Procedure or the
Weighted Sum Procedure for an item which nearly follows the Guttman scale, therefore, the resulting
estimated operating characteristics of the correct and the incorrect answers will tend to be flatter than
they actually are. I

This problem can be solved by estimating differential conditional distributions of r , given f , for
the separate discrete item responses to an "unknown" item. Let Ok,(r I9) denote the conditional
density of r , given f , for the subpopulation of subjects who share the same discrete item response
kg to an "unknown" item g. We can write

(6.4) 'kg(.r I f) =1'(r) 'W~f I) [g'(01' , I

where f*, (r) indicates the density of r for the subpopulation of subjects who share k, as their
common item score of item g, 0(f Jr) is the conditional density of f, given r, which is approximated
by the normal density, n[r, C ' ] , and 9g(f) is the marginal density of f, for this subpopulation,
and for which we have

(6.5) gZ,( ;= r) f, (fI9 r) dr .

We notice that there is a relationship

(6.6) f1,(r) = f*(T) PAg(r) J0 f(r) Pg(r) dr]-  
,

where f*(r) denotes the density of r for the total population. Since we have

(6.7) O(T If) = f* r) 40( r) Ig' () ' ,I

where g (f) is the density of f for the total population of subjects which is given by

(6.8) g"(f) f (r) ( I r) dr

from the above formulae we obtain

(6.9) ¢k(r IO ) = ¢(r f9) P;g(r) h(f)
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where h( ) is a function of f and constant for a fixed value of f . Thus Ok, (r I f) is a density
function proportional to 0(r I f) P,(r) . We notice that 0(r I f) in this formula is common to all theII
item scores and across different unknown items, while P* (r) is a specific function of r for each k,.
Since 0(r I f) can be estimated by one of the four methods described in Section 2.3, our effort should
be focused on finding an appropriate differential weight function for each kg . Let Wk9 (r) denote such
a differential weight function, which replaces P,(r) h(f) in (6.9). Thus we can revise (6.1) and (6.2)
into the forms

(6.10) Pk9 (0) = P T,[r(O)] = Wk,(r)O(r I ,)[ZWk,(r;s) (r -1
sEkg 8=1

and

N

(6.11) Pk" (O) = P;,[r((0) = W (f.)Wk(r)¢(r I f.)[--w(f.)Wk(T; s)¢(r I 1

sEkg 8=1

Since the differential weight function Wk9 (r) involves P , (r) , which itself is the target of estimation,

we may use its estimate, P;((r) , obtained by the Simple Sum Procedure or by the Weighted Sum

Procedure, as its substitute. In so doing, we may need some local smoothings of P;', (r) where the
estimation involves substantial amounts of error because of locally small numbers of subjects in the base
data, etc. In some cases we may need several iterations by renewing the differential weight functions
on each stage until the resulting estimated operating characteristic converges.

(VI.31 Examples
We have tried this proposed method on the simulated data provided by Dr. Charles Davis of the

Office of Naval Research, using the Simple Sum Procedure of the Conditional P.D.F. Approach combined
with the Normal Approach Method with some modifications as the initial estimate of Pkg(r) in the
differential weight function. These data are simulated on-line item calibration data of the initial itempool
calibration based upon conventional testing, in which 100 dichotomous items are divided into four
subtests of 25 items each, and each subtest has been administered to 6, 000 hypothetical examinees,
and those of different rounds based rpon adaptive testing, in which each of the 50 new binary items
has been administered to a subgroup of 1,500 hypothetical subjects out of the total of 15,000 . These
hypothetical examinees' ability distributes unimodally within the interval of 0 , (-3.0, 3.0), with slight

negative skewness.

For the purpose of illustration, Figure 6-1 presents the results of the Differential Weight Procedure
using the results of the Simple Sum Procedure of the Conditional P.D.F. Approach combined with the
Normal Approach Method with some modifications as the initial estimates, for a couple of items of
the initial itempool. They are dichotomous items, and were intentionally selected from those items
whose true operating characteristics of the correct answer are non-monotonic, in order to visualize the
benefit of the nonparametric estimation of the operating characteristic. In each graph, also presented
for comparison is the best fitted operating characteristic of the correct answer following the three-
parameter logistic model, which has been given by Dr. Michael Levine. We can see in these graphs that
the resulting estimated operating characteristics are fairly close to the true ones, and that they reflect
the non-iaonotonicities. The reader is directed to ONR/RR-90-4 (Samejima, 1990) for more examples.

[VI.4] Sensitivities to Irregularities of Weight Functions

As we have proceeded, several factors have been identified and observed which affect the resulting
estimated operating characteristics substantially. They are concerned with the differential weight func-

47



I
m

1.0

0.9 3
0.8

0.7 1
"3 0.6-

<0.50M 0.4 5

ILI0.3-

0.2

0.1 -
0.0 _ _ I I I I I=t

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

THETA I

0.9 I

0.8

0.7 5i 0.6

0.5 -
0

0.4
0.3 -- .....

0.2-I

0.1 3
0.01aiif

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 3
THETA

FIGURE 6-1

Two Examples of the Estimated Operating Characteristic of the Correct Answer
Using the Differential Weight Procedure (Dotted Line), in Comparison with U

the True Operating Characteristic (Solid Line) and the Best Fitted
Three-Parameter Logistic Curve (Dashed Line).
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tion, and can be itemized as: 1) lower end ambiguities, 2) upper end ambiguities, 3) local irregularities
and 4) overall irregularities.

Out of these factors, lower and upper end ambiguities basically come from the fact that we do not
usually have sufficiently large numbers of subjects on the lowest and the highest ends of the interval
of 0 of interest upon which the estimation of the operating characteristics is made. Also the fact that
the test information function 1(0) is used in the transformation of 0 to r which is specified by
(2.9) may have something to do with these ambiguities. It has been observed (Samejima, 1979b) that
in using equivalent items following the Constant Information Model (Samejima, 1979a) the speed of
convergence of the conditional distribution of the maximum likelihood estimate 9 , given 0 , to the
asymptotic normality with 0 and i(9)]-/ 2 as its two parameters substantially differs for different
levels of 0 , in spite of the fact that the amount of test information is constant for every level of 0 .
To be more specific, the convergence is observed to be much slower at those levels which are close to
either end of the interval of 6 for which the amount of test information is non-zero and constant, and
faster at intermediate levels of 0 . This situation can be ameliorated if we replace the test information
function 1(0) in (2.9) by one of its two modified forms (cf. Chapter 3), T(O) and E(0) .

By irregularity we mean non-smoothness, which is exemplified by an unnatural angle, etc. It has
been observed that for most items the resulting operating characteristic is amazingly sensitive to these
irregularities of the differential weight function. In order to observe these sensitivities, Figure 6-2
illustrates how these irregularities, which are involved in the differential weight function, affect the
resulting estimated operating characteristic. For more examples, the reader is directed to ONR/RR-

90-4 (Samejima, 1990).

The effect of local irregularities is most interesting to observe in the three examples presented by
Figure 6-2. In each of these graphs, the artificially irregular differential weight function for the correct
answer is drawn by a short dashed line, and, in order to emphasize its irregularities, it was proportionally
enlarged and shown by a long dashed line. We can see in each graph that, when the differential weight
function has an unnatural angle, for example, the resulting estimated operating characteristic of the
correct answer also shows an unnatural angle at approximately the same level of 0 . We can also see in
these graphs how overall irregularities of the differential weight function affect the resulting estimated
operating characteristic, and how sensitive the latter is to the former. This type of sensitivity of the
resulting estimated operating characteristic to the irregularities of the differential weight function is
encouraging as well as threatening, for it promises success in the estimation provided that we succeed
in finding the right differential weight function.3 During the present research period, perhaps the author and her research assistants have spent the
greatest amount of time for developing this method, Differential Weight Procedure of the Conditional
P.D.F. Approach. Thus, in addition to the results exemplified in this section and in ONR/RR-90-
4 (Samejima, 1990), there have been produced so many other results, using different strategies in
specifying differential weight functions, etc. The research will be continued in the future, and those
results which are not introduced in this final report will be included in the basis upon which the future
research will be founded and planned, and will eventually be introduced in future research reports.

[VI.51 Discussion and Conclusions

A new procedure of nonparametric estimation of the operating characteristics of discrete item re-
sponses has been proposed, which is called Differential Weight Procedure of the Conditional P.D.F.
Approach. Some examples have been given, and sensitivities of the resulting estinated operating char-

acteristics to irregularities of the differential weight functions have been observed and discussed. These
outcomes suggest the importance of further investigation of the weight function in the future.

To summarize, although Simple Sum Procedure of the Conditional P.D.F. Approach combined with
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the Normal Approach Method works reasonably well for the on-line item calibration of adaptive testing,
and also for the paper-and-pencil testing, especially when the number of subjects is large, if we wish
to increase the accuracy of estimation we can use the Differential Weight Procedure. The disadvantage
will be the added CPU time, so we need to consider the balance of the cost and accuracy of estimation
before we make our decision. It will be less expensive, however, if we compare the CPU time required
for the present procedure with the time required for the Bivariate P.D.F. Approach.
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VII Content-Based Observation of Informative Distractors
and Efficiency of Ability Estimation

Partly because of the availability of computer software, such as Logist (Wingersky, Barton and Lord,
1982), Bilog (Bock and Atkin, 1981), etc., it is a common procedure among researchers that they mold
the operating characteristics of correct answers into the three-parameter logistic model, ignoring their
possible non-monotonicity. In some cases, strategies are even taken so that distractors, which cause
the non-monotonicity, are considered as undesirable and are replaced by some other non-threatening
alternative answers.

A question must be raised as to whether this strategy is wise. In this chapter, this issue will be
discussed both from theory and from practice, and a new strategy of writing test items, which leads
to more efficient ability estimation, will be proposed. It will take advantage of the ease in handling I
mathematics attributed to parameterization, and yet minimize the effect of noise caused by random

guessing.

[VII.I] Non-Monotonicity of the Conditional Probability of the Positive
Response, Given Latent Variable 3

This section deals basically with the essence or a summary of the paper published by the author
more than twenty years ago (Samejima, 1968), as one of the research reports of the L. L. Thurstone
Psychometric Laboratory of the University of North Carolina. The content of the paper was a protocol
which led to the proposal of a new family of models for the multiple-choice test item (Samejima,
1979b). The author believes that this paper published in 1968 still gives new ideas to today's research
communities. 3

The paper is concerned with the nominal response, and also multiple-choice situations, in which
examinees are required to choose one of the given alternatives, in connection with the graded response
model (cf. Samejima, 1969, 1972). For a multiple-choice item a certain number of false answers are given

in addition to the correct answer. In a general case it is impossible to score them in a graded manner in
accordance with their degrees of attainment toward the goal. Thus the multiple-choice situation should
be treated as a special instance of the nominal level of response, although, in addition, the problem of

random or irrational choice should be investigated.

Confining discussions to examinees who have responded to item g incorrectly, there can be diversity
of false answers if they have responded to it freely, without being forced to choose one of a set of
alternative answers. It is conceivable that some of the false answers may require high levels of ability
measured while some others may not, some may be related to the ability measured strongly while some
others may not, etc. An objective measure of the plausibility of a specified false answer is its operating
characteristic, i.e., the probability of its occurrence defined for a fixed value of ability 9 , and, therefore, I
expressed as a function of 9 .

Let M,(O) be a sequence of the conditional probabilities corresponding to the cognitive subprocesses

required in finding the plausibility of response k. to item g , and Uk, (9) be the conditional probability I
that an examinee discovers the irrationality of response k. as the answer to item g , on condition
that he has already found out its plausibility. The operating characteristic of k. , which is denoted by
Pk,(9) , can be expressed by

(7.1) Pk.,(0) 1 - Uk (0) 171 I(0)

since it is reasonably assumed that an examinee who gives a response k,, to item g is one who liacs

succeeded in finding k, 's plausibility, and yet failed in finding its irrationality. 'Xe notice that t his 3
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formula is exactly the same in its structure as the definition of P.,,(0) on the graded response level,
where M,(0) is replaced by M,(0) and Uk(0) is replaced by M(.,+1)(0) (cf. Samejima, 1972).
Defining Mk,(9) such that

(7.2) Mk,(0) = J M,(0)

sckg

we can rewrite (7.1) into

(7.3) Pk,(0) = Mk,(0)[1 - Uk, (0).

It will reasonably be assumed from their definitions that both Mk5 (0) and Uk, (9) be strictly
increasing in 0 , provided that a specified response k, is a good mistake in the sense that the
discoveries of its plausibility and irrationality are properly related with ability 0 . It will also be
reasonably assumed that the upper asymptotes of Mkg(9) and Uk5 (O) are unity, and the lower
asymptote of Mk9 (9) is zero.

We assume that both Mk 2 (O) and Uk,(9) are three-times-differentiable with respect to 0 . It is
easily observed that, in order to satisfy the unique maximum condition (Samejima, 1969, 1972), Pk, (0)
defined by (7.3) must fulfill the following inequalities:

(7.4) a 0 9-- o M k,(0) = a a M k (0){1M kg (0)}-_] <  0
(7.40-2 a ao

and

(7.5) a0-- log[l - Uk 0]= a k 0 0) < 0() a2  ao ao

(For proof, see Samejima, 1968.) Note that in this case the lower asymptote of Uk,(0) need not be
zero. The operating characteristic of a specified response k. which satisfies the unique maximum
condition was called the plausibility curve (Samejima, 1968), and later the plausibility function (cf.
Samejima, 1984a). As the condition suggests, the plausibility curve is necessarily unimodal. A schema-
tized hypothesis for the plausibility curve is the following. The probability that an examinee will find
the plausibility, but will fail in discovering the irrationality, of a specified response k, as the answer
to item g is a function of ability 0 ; it increases as ability 9 increases, reaches maxium at a certain
value of 0 , and then decreases afterwards. If an item provides many such responses, their plausibility
curves will be powerful sources of information in estimating examinees' abilities. That is to say, we can
make use of specific wrong answers to an item as sources of information, as well as the correct answer.

Let Pg(O) denote the operating characteristic of the correct answer of a dichotomous item g in
the free-response situation. Let P;(O) he the same function, but in the multiple-choice situation. The
conventional three-parameter model is represented by

(7.6) P;(9) = c" + (1 - cq)P()

where c. is the probability with which an examinee will guess correctly (Lord and Novick, 1968).
This is a monotonically increasing function of 0 with c, (> 0) and unity as its lower and upper
asymptotes, provided that P,(9) is strictly increasing in 0 with zero and unity as its lower and upper
asymptotes.
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The psychological hypothesis which has led to the formula (7.6) in the multiple-choice situation iS
the following. If an examinee has ability 0 , then the probability that he will know the correct answer
is given by Pa(6) ; if he does not know it, he will guess randomly, and, with probability c, , will guess
correctly (Lord and Novick, 1968). Thus we have for the operating characteristic of the correct answer
of item g in the multiple-choice situation

(7.7) Pg(o) + [1 - Pg(O)Jcg

which leads to (7.6). This hypothesis may not necessarily be appropriate for ability measurement. One I
can never tell in the measurement of a reasoning ability, for instance, whether an examinee knows the
correct answer to item g or not, until he has tried to solve it. He may respond with an incorrect
alternative without guessing at all. To explain such a case we need some other hypothesis than the one
which leads to the formula (7.6).

Hereafter, we assume that Pg(6) is strictly increasing in 0 with zero and unity as its lower and
upper asymptotes, and is twice-differentiable with respect to 9 . Suppose, further, that both P,(0)
and [1 - Pg(O)] satisfy the unique maximum condition. In this case P,(O) defined by (7.6) does
not satisfy either of Conditions (i) and (ii) for the unique maximum, unless c, is zero, i.e., the free-
response situation, although they are fulfilled for the negative answer to item g (cf. Samejima, 1973).
Observations and discussion are made (Samejima, 1968) giving two simple cases of the multiple-choice
situation as examples. In those examples, only two items are involved, and the response pattern, (1,0),
is solely treated, and precise mathematical derivations are given. I

A possible correction for the conventional functional formula for the operating characteristic of the
correct answer of a multiple-choice item can be made by introducing the probability of random guessing
defined for a fixed value of 6 . Let d,(O) denote this probability. A reasonable assumption for this I
function may be that it be non-increasing in 0 . Thus the probability with which an examinee of ability
6 will answer item g correctly ly following the due cognitive process is expressed by (1 -d,(6)}1P,(0 ) ;
and the one with which he will give the correct answer by guessing should be d,(0)c,. For economy of
notation, let P;(6) be the operating characteristic of the correct answer to item g in the corrected I
functional formula also. We can write

(7.8) Pg(O) = [1 - du(6)1Pg(0) + d1 (O)c,

= Pu(O) + da,(O)[cg - Pg()] .3

A schematized psychological hypothesis which leads to this formula is as follows. If an examinee
has ability 0 , then he will depend upon random guessing in answering item g with probability
d4(O) ; in that case, the conditional probability with which he will guess correctly is given by cY . If
he does not depend upon random guessing, he will try to solve the item by the due cognitive process,
and will succeed in solving it with probability Pg(6) . Thus according to this functional formula the
probability with which an examinee will respond with an incorrect alternative without guessing is given
by [1 - dg( 6 )1[1 - Pg(O)l , which is nil in the model represented by the formula (7.6).

We can conceive of several factors which may affect the functional formula for d,(O) . The difficulty
of item g may be one of them; the discriminating power may be another; the number of alternatives
attached to item g may also affect the probability, i.e., it may be that the fewer the number of alter-
natives, the more tempted to depend upon random guessing an examinee will be; also the plausibilities
of the alternatives may be counted as a factor.

In a simplified case where d,(O) is constant throughout the whole range of 0 , we can rewrite (7.8)
in the following form.
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(7.9) P;(9) = due, + [1 - d.Pg(9)

This is somewhat similar to formula (7.6), the conventional functional formula for the operating
characteristic of the correct answer of a multiple-choice item. The lower asymptote of the present
function is dgcg (< cg) , however, while it is c. in (7.6); the upper asymptote of the present function is
(I - d,(1 - cg)] , which can be less than unity, while it is unity in (7.6). In a special case where dg = 0 ,

that is, an examinee tries to solve item g by proper reasoning with probability one, (7.9) reduces
to Pg(9) , the operating characteristic of the correct answer in the free-response situation. In another
special case where d = 1 , that is, an examinee depends upon random guessing with probability one,
(7.9) reduces to a constant, cg. In the more general case where dg(9) varies as 0 varies, it is observed
from (7.8) that

0 < P(0) < p*(0) < c ; if 0 < go

(7.10) P ;( 9) =Pg(
9) < ; if 0 = 0

cg < Pg(0) _Pg () < 1 ;if 0 > 0o

where

(7.11) go = P" (c),

provided that c9 is greater than zero. This result is quite natural, since it is reasonably assumed that
the probability of success in solving item g will decrease by random guessing if the one attained by
the due cognitive process is higher than the one attained by random guessing, and it will increase by
random guessing if the latter probability is higher than the former. If we assume that the asymptotes
of d,(9) in negative and positive directions be unity and zero, respectively, we will obtain c. and
unity as the lower and upper asymptotes of P;(0) . Figure 7-1 presents two examples of the operating
characteristic given by (7.8) where Cg is 0.2 , using two different d,,(O) 's . Note that there is a
dip on the lower part of the curves for P;(0) . These two d.(0) 's are identical for the lower levels of
9 , but differ on the upper levels, with the upper asymptotes 0.0 and 0.1 , respectively. In these
examples, therefore, the upper asymptote of P*() is unity in the first example, and 0.92 in the
second, i.e., the conditional probability for the correct answer never approaches unity however high the
ability may be.

If dg(e) is differentiable, P (9) is also differentiable, and from (7.8) we have

(7.12) 99 . a-9

(.12)o-.Pg () d (1-d ()5 Pg (0) + I C - Pg(8)To d,(0)

Thus it is obvious that Pg() is strictly increasing in 9 for the range 0 > Oo , if, and only if, d,(O)
is less than unity for the range of 9 satisfying 0 > go . Thus in this case P;(9) is non-decreasing in
0 throughout its whole range. In general, P:(9) equals c, and presents a horizontal line as far as
d(9) is unity, and then increases for the rest of the range as 9 increases.

As for the range expressed by 9 < 0() , P(9) equals c[, regardless of the value of P,(0) for the
values of 9 for which d,(9) is unity, and is some positive value less than c, otherwise. If d,,(O) is
unity throughout this range of 9 , P:(O) presents a horizontal line for this range. If d,,(9) is unity

for the negative extreme value of 9 , but d(O) takes on some values less than unity for a subset of
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Relationships among P,(O), d,(O) and P;(6) Using Two Different d(O) 's.

6 of this range, P;(O) has at least one local minimum. If dg(O) is less than unity for the negative
extreme value of 0 , P; (0) can be strictly increasing in 6 , non-decreasing, or have one or more local I
minima, in accordance with the functional formula for d,(O) .

It is obvious that any operating characteristic having local minima does not satisfy the unique
maximum condition (Samejima, 1969, 1972), and neither does the one whose first derivative equals zero
at some value of B. In the case of P;(0) defined by (7.8) we can prove that, in general, it does not
satisfy the unique maximum condition, even if it is strictly increasing in 0 . (For proof, see Samejima,
1968.) I

Two characteristics of the model represented by (7.8) are that it allows dips, and also a smaller value
than unity for the upper asymptote of the operating characteristic of the correct answer, as Figure 7-1
illustrates. In these examples, there is only one dip on the lower level of 6 . There can be more than
one, however, and an example is presented elsewhere (Samejima, 1968). In many cases the model may
describe the real operating characteristic of the correct answer more closely than the three-parameter
model.

It has been reported by several researchers that they have come across estimated operating charac-
teristics of correct answers that do not converge to unity, but to some other values less than unity. Note
that the general model described above can handle such situations, although most of the other models
proposed by different researchers so far cannot.

We notice that neither (7.6) nor (7.8) explicitly take. into consideration the influences of separate
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distractors. Suppose an examinee A has chosen to solve item g by reasoning, i.e., without guessing, and
has reached an answer which is not correct. Suppose, further, that this specified response is not given
as an alternative answer to this item. Then either he will decide to give an answer by guessing, or he
will try to solve the item by reasoning all over again. To account for these possibilities, we would have
to give practically all the different plausible responses to item g as its alternatives, which is practically
impossible, since the number of alternative answers is more or less restricted. In contrast to this, it
is interesting to note that the psychological hypothesis behind the three-parameter logistic model may
be more realistic in the case where no very plausible responses except for the correct answer to item
g are given as its alternative answers. Thus, even if an examinee has reached a specified plausible
response other than the correct answer, he may turn to random guessing simply because he cannot find
that specified answer among the alternatives. Such a situation has another serious problem, however,
since it is likely for an examinee who is highly alternative-oriented to choose the correct answer without
much reasoning or guessing, simply because the other alternatives are too ridiculous to be the answer
to the item. As the result, the operating characteristic of the correct answer may be deformed so that
it has a lower difficulty and less discriminating power. Plausible answers as distractors are necessary as
alternatives in order not to destroy the nature of the item.

It is conceivable that the plausibilities of the alternatives attached to item g other than the correct
answer will be one of the factors affecting the probability of random guessing in the multiple-choice
situation. For this reason, here we shall suppose that an examinee will try to solve the item following
proper cognitive processes at the beginning, and only in the case where he has reached an answer which
is not given as an alternative, or where he has failed to find any answer at all, he will guess.

Let k. or hg denote a specified response to item g which is given as an alternative, including the
correct answer, and Pkg(9) or Ph,(9) be its operating characteristic in the free-response situation.
It may reasonably be assumed that -Zk, Pkg (6) is less than or equal to unity for any fixed value of
O . Let P;(0) or P* (0) denote the operating characteristic of a specified alternative k9 or h. in
the multiple-choice situation, and Ckg or Ch, be the probability of choosing kg or hg by guessing,

which satisfies

(7.13) Ck, 1
kg

Thus we can write

(7.14) P4,(0) = Pk,(0) + [1- Ph, (0)1 ck,
h,

for any kg , and, by using the notation for the correct answer as we did in the previous sections, we
obtain

(7.15) P,(0) = P(O) + 1- -Ph, (0)] c,
h ,

It is worth noting that we have specified not only the operating characteristic of the correct answer
in the multiple-choice situation, but also of each dist.ractor. The utility ot the operating characteristic
of each wrong alternative answer in the estimation of an examinee's ability, as well as the one of the
correct response, is suggested, and this is a feature of the present discussion.

It has been made clear that, in general, P (O) does not satisfy the unique maximum condition
regardless of the functional formulae for the plausibility curves of the distractors. As for the alternatives
other than the correct answer, it can easily be shown that, in general, P;,(O) does not satisfy the
unique maximum condition (cf. Samejima, 1968, 1979b).

57



I
-50 -40 -30 -20 -1.0 0 1 2O 3,o o 000,~ o ,O 20 30

09 "  3 0.1

08- ;0.2

07- P. 003
_ I_ .' ~

Z 06- 040.5- .. .0_ /h 5
o- ._04 06 I
0.3 07

0.2- 085
01 09. )

0.0 'j 1.." ,,,, ,,•,J 0-50 -4.0 -30 -2 -0.0 0.0 1.0 20 3o 0

THETA 3
FIGURE 7-2

Operating Characteristic of the Correct Answer in the Free-Response Situation S
(Solid Line) and in the Multiple-Choice Situation (Dashed Line), in the Case
Where Only Two Alternatives Are Given; Also the Operating Characteristic

of the Other Alternative in the Free-Response Situation (Solid Line) Is
Plotted from the Ceiling; c. = cg = 0.5 .

For the purpose of illustration, Figure 7-2 presents a simple example in which only two alternatives,
the correct answer and one incorrect response, are given. In this example, P; (0) for the wrong answer
is drawn from the ceiling in order to make the picture visibly understandable. A normal ogive function

given by

(7.16) P0 () = = J exp{-u 2 2} du

with a0 = 1/1.48 and b. = 0.36 is used as the operating characteristic of the correct answer, and the
same formula is applied for Uk,(0) and Mk,(O) for the incorrect response. The corresponding values
of the parameters are (1/1.23) and -1.84 for M,(O) , and (1/1.51) and -0.83 for Uk,(6)
The value of c. , as well as that of ckg for the incorrect answer, is 0.5 .

It is obvious from the above observations and discussion that these are the fundamental philosophies
which led to the proposal of the new family of models for the multiple-choice test item (Samejima,
1979b). These philosophies will provide us with the idea of content-based observation of informative
distractors and strategies of writing test items, which will be proposed in a later section. The general
model described here is called Informative Distractor Model, in contrast with the Equivalent Distractor
Model, to which the three-parameter model represented by (7.6) belongs (cf. Samejima, 1979b).
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[VII.21 Effect of Noise in the Three-Parameter Logistic Model and the
Meanings of the Difficulty and Discrimination Parameters

It is still a common procedure among researchers to adopt the three-parameter logistic model, which
is represented by (3.11) in Section 3.2, for their multiple-choice test items and compare the resulting
estimated discrimination parameters, or the difficulty parameters, across different items. An important
fact that is overlooked is that this is not legitimate, for the addition of the third parameter c. makes
the other two item parameters lose their original meanings. If a, = 1.00 and c, = 0.25 in the
three-parameter logistic model, for example, this corresponds to a, = 0.75 in the logistic model in
the maximum discrimination power. If, in addition to these parameter values, b. = 0.00 , then the
difficulty level for the three-parameter logistic model defined as the level of 0 at which chances for
success are 0.5 is -0.4077336 , i.e., substantially lower than 0.00

In general, we can write

. = (1 - C) a.

(.) = b, + (Da)- ' log (1- 2%)

where aa denotes the actual discrimination power and P. is the actual difficulty level in the three-
parameter logistic model. As we can see in (7.17), the effect of the third parameter c. can be
substantial, both on the discrimination power ag and on the difficulty index f . Thus the simple
comparison of the values of ag for two or more test items having different values of the lower asymptote
cg is illegitimate and can be harmful, for the factor (1 - cg) may affect the value of ca, , the real
discrimination power, substantially. As for the difficulty index, since the second term on the right hand
side of the second equation of (7.17) is always negative for 0 < ca < 0.5 , this term represents the
amount of decrement of the difficulty level. Note that as c9 tends to 0.5 , /3l approaches negative
infinity! (If Cg > 0.5 then fig does not even exist.) The illegitimacy of, and the danger in, comparing

bg 's across two or more test items having different lower asymptotes cg is even more obvious for the
difficulty index.

It is obvious from theory that in both the logistic and the three-parameter logistic models the
derivative of the operating characteristic of the correct answer is highest at 0 = b , . Actually, the
derivatives are: Da5 /4 and (1 - cg)Dag/4 , respectively. The ratio of this maximal slope between the
three-parameter logistic model and the logistic model is (1- c5 ) , which equals 0.75 when c, = 0.25 ,
and is as low as 0.50 when c. = 0.50. The corresponding ratio between the three-parameter logistic
model and the normal ogive model is approximately 0.938687718(1 - c) , which is a little less than
(1 - c)

Figure 7-3 illustrates that several sets of substantially different parameter values in the three-
parameter logistic model can produce very similar operating characteristics of the correct answer. We
can tell that the differences in the values of the discrimination and difficulty parameters for these items
are substantial, and yet the resulting curves are very close to each other for a wide range of 6 . Simple
comparison of the two estimated discrimination parameters is illegitimate, therefore, when the estimated
guessing parameters prove to be different from each other, as is usually the case with actual data. Since
the estimation of the third parameter c. tends to be most inaccurate, this example indicates the dan-
ger in direct comparisons of the estimated discrimination parameters, and also the estimated difficulty
parameters, across the items.

In most cases the estimated guessing parameter of a multiple-choice test item provides us with some
other value than the reciprocal of the number of the alternative answers. It is reported that in some cases
the estimated c. takes on quite high values (cf. Lord, 1980, Section 2.2). These phenomena suggest
that the philosophy behind the model is unrealistic. Researchers using tho three-parameter logistic
model argue, however, that it still is a convenient approximation to real operating characteristics of
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FIGURE 7-3 1
Examples of the Operating Characteristics of the Correct Answer in the Three-Parameter Logistic

Model (Dotted Lines), Together with the One in the Logistic Model with a. = 1.00 and
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and c. are: 1.05, -0.52, 0.10; 1.10, -0.40, 0.20; 1.15, -0.27, 0.30; 1.20, -0.13, 0.40;

Respectively. 5

correct answers, because of its simplicity in mathematics. In a way it is true. The effective use of
the three-parameter model cannot be realized, however, unless we know the problems attributed to I
the model, and use the model in such a way that these weaknesses will not cause too much noise and
inefficiency.

Investigation of the problems encountered when we apply the three-parameter logistic model to the U
data which actually follow the normal ogive model was made earlier (Samejima, 1984b). The data
used in the study are simulated data for two samples of 500 and 2,000 hypothetical examinees,
respectively, sampled from the uniform ability distribution for the interval of 0 , (-2.5, 2.5). In order a
to investigate the effect of the number of test items on the resultant estimated parameters obtained by

Logist 5, we used: 1) Ten Item Test and 2) Thirty-Five Item Test, both of which consist of binary items
following the normal ogive model. The response pattern for each hypothetical subject was produced
by the Monte Carlo Method. Combining these two hypothetical tests, we observed the results of: 3)
Forty-Five Item Test, and, in addition, we.observed the results of rather artificially created: 4) Eighty
Item Test (cf. Samejima, 1984b). 3

These results suggest that there exists a substantial effect of the assumed third parameter, c, , on the
other two estimated item parameters, if the estimation is made by molding the operating characteristic
of the correct answer into that of the three-parameter logistic model, when actually it follows the normal

ogive model. This effect appears to be stronger on the estimated discrimination parameter than on the
estimated difficulty parameter. In order to amend these enhancements, the discrimination shrinkage

I
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factor and the difficulty reduction index were proposed (Samejima, 1984b) by formulae (7.19) and (7.21),
respectively.

(7.18) a*= 5(c*) a.

(7.19) 5 =(c) - log(1 - 2c ) log(l + cg) - log(1 -

(7.20) b = bg + (cI ag)

(7.21) e(c I aJ) = (Dag) - ' log(1 + c,) - log(1 - c*)

In these formulae, a, , b; , and cg indicate the estimated item discrimination, difficulty and guessing

parameters when the three-parameter logistic model is assumed, respectively. Some resulting estimated
operating characteristics of the correct answer turned out to be disastrously different from the theo-

rectical functions, especially when only ten binary test items were included. We find no substantial

differences between the results of 500 Subject Case and 2,000 Subject Case, indicating that increasing

the number of subjects from 500 to 2,000 does not provide us with a substantial gain.

It has been pointed out that the three-parameter logistic model does not satisfy the unique maximum
condition for the likelihood function, and this topic has been thoroughly discussed (Samejima, 1973).

The expected loss of item information for a fixed value of 9 is given by

(7.22) Ig(O) - I(O) =cg 2 a [{¢,(9)} 2 {1 -ag(O)}][c, + (1 -

where

(7.23) kg(9) = 11 + exp{-Dag(() -bg)] -1'

and 1.(0) and 1;(0) are the item information functions in the logistic and the three-parameter logistic
models, respectively. We have for the critical value 0. , below which the information provided by the
correct answer to the item following the three-parameter logistic model assumes negative values

(7.24) g = bg + (2Da,)-'logc,

which is strictly increasing with the increase in the parameter value c, , and also in a, and in b1,
If, for example, a. -- 1.00 and bg = 0.00 , O = -0.473364 for cg = 0.20 , and 9 =-0.407734 for
cg = 0.25 . They are considerably high values relative to bg .

An important implication is that 0- is the point of 0 below which the existence of a unique
maximum likelihood estimate is not assured for all the response patterns which include the correct
answer to item g . Although this warning has been ignored by most researchers for many years, a

recent research (Yen, Burket and Sykes, in press) points out this is happening much more often than
people might think.

It has been pointed out (Samejima, 1979a, 1982a) that there L a certain constancy in the total

amount of item information, regardless of the parameter values and of specific functional formulae for

the operating characteristic of the correct answer. If, for example, the model belongs to Type A, i.e.,
the operating characteristic of the correct answer is monotone increasing with zero and unity as its

lower and upper asymptotes, respectively, then the total area under the curve of the square root of the
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item information function will equal 7r . If the model belongs to Type B, i.e., the same as Type A
except that the lower asymptote of the operating characteristic of the correct answer is greater than
zero, as is the case with the three-parameter logistic model, then the total area will become

(7.25) 7r - 2tan-I[g(lcg)-111/2 , I

with the second and last term as the loss in the amount of total item information. This last term
is strictly a function of cQ . When cg = 0.20 , for example, the total amount of item information
reduces, approximately, to 0.7057r , and when c. = 0.25 it is approximately equal to 0.667r . I

More observations concerning the effect of noise in the three-parameter logistic model have been made
elsewhere (Samejima, 1982b).

As all the above observations indicate, the addition of the third parameter, cg , to the logistic model
creates many negative results. We have seen that these negative effects are greater for larger values of
c9 . In using the three-parameter logistic model as an approximalon to real operating characteristics,
therefore, we need to take these facts into consideration. Among others, if we are in a situation where I
we can modify or revise our items, we must try to reduce the effect of noise coming from c9 as much
as possible. Strategies of writing the multiple-choice test items must be considered accordingly. 3
[VII.3] Informative Distractors of the Multiple-Choice Test Item

So far most observations and discussion have been focused on theory. Applications of certain non- 3
parametric methods of estimating the operating characteristics for some empirical data have revealed,
however, that many multiple-choice test items do not follow the three-parameter model, nor do they
follow the Equivalent Distractor Model in general, to which the three-parameter logistic model belongs. U
Those items can best be interpreted by the Informative Distractor Model.

Figure 7-4 presents an example of the set of operating characteristics of the four alternative answers

to an item taken from the Level 11 Vocabulary Subtest of the Iowa Tests of Basic Skills (Samejima, I
1984a), which was estimated by the Simple Sum Procedure of the Conditional P.D.F. Approach com-
bined with the Normal Approach Method (cf. Section 6.1). We can see in this figure that each distractor
has its own unique operating characteristic, or plausibility function, and also that the estimated oper-
ating characteristic of the correct answer is fairly close to the one in the normal ogive model, which
is drawn by a solid line in the figure. This set of operating characteristics can better be represented
by one of the family of models proposed for the multiple-choice test item, which was originated by the

philosophy described in the preceding section and takes account of the unique information provided by U
each distractor as well as the effect of the eyaminees' random guessing behavior (cf. Samejima, 1979b).
Figure 7-5 illustrates the operating characteristic of the correct answer in Model A. We can see that
it is very close to the one in the normal ogive model which is drawn by a dotted line, except for the I
lower part of the curve, the conditional probability of success which is almost entirely caused by random
guessing. In cases like this, it will be wise to approximate the curve by the normal ogive function by
discarding the item response in estimating lower ability, since it provides us with nothing but noise, as

was discussed in the preceding section.

Detailed observations for the plausibility functions of distractors are made elsewhere (Samejiia,

1984a) for the forty-three items of the Level 11 Vocabulary Subtest of the Iowa Tests of Basic Skills.
Similar discoveries have also been reported with respect to many ASVAB test, items. In those results,
it is clear that separate wrong answers given as alternatives provide us with differential imiformation,
which can be useful in ability estimation in the sense that it will substantially increase the accuracy of

estimation.
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[VII.4] Merits of the Nonparametric Approach for the Identification of
Informative Distractors and for the Estimation of the Operating
Characteristics of an Item

Methods and approaches developed for estimating the operating characteristics of discrete item
responses without assuming any mathematical form (cf. Section 2.3; Samejima, 1981, 1990) enable us to I
find out whether or not a given incorrect alternative answer to a multiple-choice test item is informative
in the sense that it contributes to the increment in the accuracy in the estimation of the individual's
ability. Recently, the author proposed a new approach, which is called Differential Weight Procedure
of the Conditional P.D.F. Approach, and which has been described in the preceding chapter. Although I
we need more research for improving the fitnesses further, those results obtained so far give us promises
for success in identifying informative distractors and in estimating their operating characteristics. I

Item analysis has a long history, starting from the classical proportion correct and item-test regres-
sion. In the context of latent trait models, the operating characteristics and the information functions
have provided us with powerful tools. Now we can add the plausibility functions of the distractors to
this category. By accurately identifying the configuration of the operating characteristics of the correct I
answer and the distractors, we shall be able to understand the characteristics of the item, its strengths
and weaknesses. In this way modifications of the item can be done if necessary. Successful nonpara-
metric methods of estimating the operating characteristics are essential, therefore, for this new, more I
informative approach to the item analysis.

[VII.5] Efficiency in Ability Estimation and Strategies of Writing Test I
Items

Observations and discussion made in the preceding sections give us much useful information as 3
well as warnings. First of all, theoretical observations indicate that non-monotonicity of the operating
characteristic of the correct answer to the multiple-choice test item is a natural consequence of theory.
Secondly, it has been shown from several different angles that the third parameter, c. , in the three-

parameter model provides us with nothing but noise; the greater the value of c. the more noise a
and inaccuracies in estimation it produces. Thirdly, it has been pointed out that, although it is still
a common procedure for researchers to mold the operating characteristics of the correct answers of
their multiple-choice test items into the three-parameter logistic model, some nonparametric methods I
applied to empirical data have revealed the non-monotonicity of the operating characteristic of the
correct answer with many actual test items, as well as differential information provided by separate
distractors. Fourthly, it has been pointed out that the nonparametric approach to the estimation of the

operating characteristics of discrete responses has been successful enough to detect the non-monotonicity
of the function when it exists, and to approximate their rather irregular curves fairly accurately.

With all these facts, it is time to reconsider conventional strategies for item writing and to propose

new strategies.

The first thing we need to reconsider is the lack of sufficient interactions between theorists and
people who write test items. It ,as been fairly common that: 1) a committee is organized for writing
test items in a specified content area or domain and eventually produces a set of test items; 2) another
group of people tests these items on a small sample of subjects, screens the items and then administers

the selected items to larger groups of subjects. Item calibration is done on the second stage, assuming
some model such as the three-parameter logistic model, etc. In most cases, there is practically no
feedback from theorists to item writers. If we set a strategy that more interactions are made between
the two groups of people so that the test items are revised and pilot tested with each interactlon, we

shall be able to improve the test, and the improvement will lead to efficiency in ability estimation.

The second thing we need to reconsider is the simpleminded avoidance of non-monct to,,icity of tle
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Operating Characteristics of the Five Alternative Answers of a Hypothetical Test Item
Following Model B, with the Parameter Values: a. = 1.5 , b= -2.0 , b= -1.0
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FIGURE 7-7

Operating Characteristics of the Five Alternative Answers of a Hypothetical Test Item
in the Free-Response Situation Following the Logistic Model on the Graded Response

Level, with the Parameter Values: a. = 1.5 , bj = -2.0 , b2 = -1.0 ,
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Respectively. 3

operating characteristic of the correct answer. While it is not desirable for an item to have higher
conditional probabilities of the correct answer on lower levels of ability than on higher levels, selecting I
alternative answers so that the dips of the operating characteristic of the correct answer be smoothed

out will lead to a substantially large value of the lower asymptote of the operating characteristic in most

cases. We must recall that even a small number like 0.2 as cg in the three-parameter logistic model I
is a big nuisance, as was discussed in Section 7.2. Our strategy must be that we make the best use of
those dips, instead of avoiding them. U

Figure 7-6 presents the operating characteristics of the five alternative answers of a hypothesized

test item following Model B (Samejima, 1979b), with the parameter values: a. = 1.50 , b, = -2.00 ,

b2 = -1.00 , b3 = 0.00 , b4 = 1.00 and bs = 2.00 . The subscript for each of the five difficulty

parameters indicates the order of easiness for the examinee to be attracted to the plausibility of each U
alternative answer, so that, in this example, b5  indicates the difficulty parameter of the correct
answer. We can see in this figure that a practical monotonicity exists for the operating characteristic

of the correct answer for the range of 9 , (-0.5, oo) , and, more importantly, within this range of 3
its lower asymptote is very close to zero, i.e., the nuisance caused by the non-zero lower asymptote will

be gone as far as we administer the item to populations of subjects whose ability distributes on higher

levels than I = -0.5 . I

These operating characteristics of the five alternative answers in Figure 7-6 are originated from those

in the logistic model on the graded response level (Samejima, 1969, 1972) with the same parameter values
(cf. Samejima, 1979b). Figure 7-7 presents the corresponding set of operating characteristics of the

correct answers in the logistic model. We notice there is an additional strictly decreasing curve in this
figure. This curve represents the conditional probability, given 9 , that the examinee does not find
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attractiveness in any alternative answers. In Model B, these people are assumed to guess randomly, so
in Figure 7-6 this curve does not exist, and the conditional probability is evenly distributed among the
five alternative answers to account for the rises in their operating characteristics at lower levels of 6 .

Figure 7-8 presents the operating characteristics of the correct answer following the logistic model
on the dichotomous response level, which are obtained by the five different redichotomizations of the
graded test item exemplified in Figure 7-7. In these functions, a, = 1.5 is the common discrimination
parameter, and the difficulty parameters are: bg = -2.0 , - 1.0 ,0.0 ,1.0 , 2.0 , respectively. This is the

starting point of the graded response model, which leads to the operating characteristics illustrated in
Figure 7-7 (cf. Samejima, 1969, 1972).

Suppose that two alternative answers which attract examinees of low levels of 0 are replaced,

and the revised item has b, = -3.0 and b2 = -1.5 , respectively. In this situation, the operating
characteristics of the correct answer obtained by the first two redichotomizations are changed. Figure
7-9 presents the set of operating characteristics for this revised test item following Model B. In this
figure we can see that the operating characteristic of the correct answer is practically strictly increasing
within the range of 0 , (-1.7, oo) , and the pseudo lower asymptote of the operating characteristic
within this range of 0 is still very close to zero.

A big gain resulting from this revision is the fact that the lower endpoint of the interval of 6 in which
the operating characteristic of the correct answer is practically monotonic has substantially shifted to
the negative direction, while still keeping its lower asymptote practically zero. Thus we can avoid the
noise coming from the lower asymptote even if we administer the item to populations of examinees
whose ability distributions are located on lower levels of 0 . In other words, without sacrificing the
accuracy of ability estimation, the utility of the item has been substantially enhanced by this revision.

The above example suggests the following strategy.

(1) If the nonparametrically estimated operating characteristic of the correct answer to
an item provides us with a relatively high value of 0 below which monotonicity does
not exist, then change the set of distractors to include one or more wrong answers
that attract examinees of very low levels of ability.

It may sound difficult to do in practice. If we pay attention to actually used multiple-choice test

items, however, we will come across many wrong alternative answers that are attracting examinees of
very low levels of ability. To give an example, the author has come across an arithmetic item asking for

the area of a rectangle. A substantial number of seventh graders chose the wrong alternative answer
which equals the sum of the two sides of the rectangle of different lengths! It is obvious that those who

did not understand how to obtain the area of a rectangle at all chose this alternative answer.

Another consideration which is important in writing test items is to keep the pseudo lower asymptote
of the operating characteristic of the correct answer close enough to zero, as is the case with the above
example. This has a great deal to do with the discrimination powers of the alternative answers, as well as
the configuration of the plausibility functions. Figure 7-10 presents the set of operating characteristics
corresponding to Figure 7-6, by changing the discrimination parameter from a. = 1.5 to a, = 1.0,
while keeping the five difficulty parameters unchanged. If we compare Figure 7-10 with Figure 7-6, we

can see a substantial enhancement of the pseudo lower asymptote within the interval of 6 , (-0.5, oc)
i.e., the nuisance has been increased by the change in the discrimination parameter.

This suggests the second strategy:

(2) If possible, try to include distractors whose estimated operating characteristics are
steep, while keeping the differential configuration of these functions as suggested in (1).

So far our strategies have been focused upon producing an informative operating characteristic of
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the correct answer. We notice, however, that these strategies will also provide us with distractors which
provide us with differential information. This implies that approximation of the nonparametrically esti-

mated operating characteristics of one or more alternative answers by some mathematical formulae will
enable us to use this additional differential information in ability estimation. This posterior parameter-

ization of the non-parametrically estimated operating characteristics of distractors will certainly lead
us to increased accuracy and efficiency in ability measurement.

[VII.6] Discussion and Conclusions

In this chapter, the shortages of the conventional way of handling the multiple-choice test have
been summarized, and also theories and methodologies that can be applied for a better handling of the
multiple-choice test item have been described; some empirical facts have been introduced to support the
theoretical observations; finally, new strategies of item writing have been proposed which will reduce
noise and lead to more efficient ability estimation.

In spite of many controversies against the multiple-choice test, because of its economy in scoring

it has been, and still is, very popular among people of psychological and educational measurement.
Fortunately, theorists in mathematical psychology have developed many new ideas and methodologies in
the past couple of decades that can improve the way of handling the multiple-choice test. Nonparametric
approach in estimating the operating characteristic is one of them. Also the rapid progress in electronic
technologies has made it possible to materialize these results of theories and methodologies in practical
situations. Today, we are in a position to take advantage of all these accomplishments.
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VIII Efficient Computerized Adaptive Testing

In the previous chapters, various research findings obtained in the present research period have

been introduced and discussed. All of these results are beneficial for computerized adaptive testing,
especially in increasing its efficiency. This chapter will summarize observations as to how these findings

and developments can be applied in computerized adaptive testing. 3
[VIII.1] Validity Measures Tailoring a Sequential Subset of Items for an

Individual 3
The item information function, 4,(0) , has been used in the computerized adaptive testing in

selecting an optimal item to tailor a sequential subtest of items for an individual examinee out of the
A rearranged itempool. A procedure may be to let the computer choose an item having the highest value I
of I(0) at the current estimated value of 0 for the individual examinee, which is based upon his
responses to the items that have already been presented to him in sequence, out of the set of remaining
items in the itempool. 3

We notice from (5.6) or (5.8) in Section 5.2 that this procedure is also supported from the standpoint

of maximizing the criterion-oriented validity, for the item which provides us with the greatest item

information 1,(6) among all the available items in the itempool also gives the greatest values of I; ()
and its square root, at any fixed value of 8 . I

[VIII.2] Use of the Modifications of the Test Information Function in Stop- I
ping Rules

It is a big advantage of the modern mental test theory over classical mental test theory that the

standard error of estimation can locally be defined by means of [I()[-1/2 , which does not depend upon
the population of ezaminees, but is solely a property of the test itself. Using this characteristic, it has

been observed (Saniejima, 1977) that in computerized adaptive testing the amount of test information
can be used effectively in the stopping rule indicating, locally, the desirable accuracy of estimation of the
examinee's ability, provided that our itempool contains a large number of items whose difficulty levels
distribute widely over the range of 6 of interest. A procedure may be to terminate the presentation

of a new item out of the itempool to the individual examinee when 1(0) has reached an a priori set

amount at the current value of his estimated 0 . I

We notice that, in general, for the stopping rule in computerized adaptive testing the modified

test information functions, T(O) and -E(6) , will serve better than the original 1(0) , for in many I
70



practical situations our itempool is more or less limited. In particular, it is usual that there are not
so many optimal items for examinees whose ability levels are close to the upper or the lower end of
the configuration of the difficulty parameters of the items in the itempool. In such a case, even if the
amount of test information has reached a certain criterion level, it does not mean that their ability
levels are estimated with the same accuracy as those of individuals of intermediate ability levels, as was
pointed out in Chapter 3. Since, taking the MLE bias function into consideration, the two modified
test information functions, T(0) and S(0) , are based upon a more meaningful minimum bound of the
conditional variance and upon a minimum bound of the mean squared error of the maximum likelihood
estimator, respectively, they will be effectively used as the replacement of 1(0) in stopping rules of
computerized adaptive testing.

The test information function 1(0) and its two modification formulae, T(O) and :(0) , are likely
to be the ones exemplified in the lower graph of Figure 3-5 for an individual examinee in the process
of adaptive testing, provided that the program for the test is written well. We should expect visible

differences between the results obtained by using 1(0) and by using one of its modification formulae,
therefore, especially for subjects whose ability levels are close to the upper or lower end of the ability
interval of interest. It is expected that these individuals will be required to take more test items in
order to make the accuracy of the estimation of 0 comparable to that of examinees of intermediate
ability levels: a fact that could not have been disclosed without T(O) and E(O)

We need to investigate this topic in the future, specifying the amount of improvement with simulated
and empirical data collected in computerized adaptive testing.

[VI1.31 Use of Test Validity Measures in Stopping Rules
When we have a specific criterion variable - in mind, it is justified to use an a priori set value of

I* (c) instead of 1(0) in the stopping rule of computerized adaptive testing. In so doing, we can obtain
the value of 1(0) corresponding to the a priori set value of 1*(') for each 0 , through the formula

(8.1) 1(0) '() (a)

which is obtained from (5.9) in Section 5.2. Thus it is easy to have the computer handle this situation,
provided that we know the functional formula for c(8) .

We notice that the test validity measures proposed in the present research (cf. Chapter 5) can be
modified, if we replace the test information function 1(0) by one of its modification formulae, T(0) and
E(O) , which have also been proposed in the present research (cf. Chapter 3). This will be pursued in

the future, when the characteristics of these two modified test information functions have further been
pursued and clarified. It is quite possible that the new test validity measures can effectively be used in
stopping rules of computerized adaptive testing.

I [VIII.4] Prediction of the Reliability Coefficient for a Specific Population
of Examinees in Computerized Adaptive Testing

It has also been observed (Samejima, 1977) that in computerized adaptive testing we can predict
the reliability coefficient if a specified amount of test information is used for the stopping rule for a
given level of ability in each of the test and retest situations, provided that the two conditions 1) and5 2) described in Section 4.2 are met. In such a case, we can write

(8.2) Corr.(8 ,§ 2) = JVar.(§j) - EI[Ipt,(0))'HlVar.(Oi){Var.(Oi) -
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+ E[{I()()1-11}-1/2 3
where I(,)(0) and I(2)(0) are the preset criterion test information functions in the test and retest
situations, respectively, which are adopted as the stopping rules for the two separate situations. Note U
that these two criterion test information functions need not be the same, and also that the reliability
coefficient is obtainable from a single administration. In a simplified case where, in each situation, the
same amount of test information is used as the criterion for terminating the presentation of new items
for every examinee, we can rewrite the above formula into the form

(8.3) Corr.(iJ 2) = [Var.(j) _ C21j[Var.(&){Var(j) _ a2 + a213/

where a? and a are the reciprocals of the constant amounts of criterion test information in the
two separate situations, respectively. If we use the same constant amount of test information as the I
stopping rule in both the test and retest situations, then the reliability coefficient takes the simplest
form !

(8.4) Corr.(J,02) = [Var.(j) - 21IVar.(i)I-  ,

where a 2 denotes the reciprocal of this common constant amount of test information. I
Also in computerized adaptive testing, either T(O) or E(0) can be used as the stopping rule in

place of the test information function 1(0) , and we can revise (8.2) into the forms 3
(8.5) Corr.(j,, 02) [Var.(j,) - EI{T(,)(0)}-1HVar.(@,){Var.(0i) - EI{T(i)(9)}-i] £

+ E[{T2) (0))-]-/,

and I
(8.6) Corr.{g,, 2) = lVar.(§i) - El{=-,i)()}-)1 ]IVar.(Oi){Var.(Oi) - Ei{-=i,()}' ]

+ E[{=(- 2)() }-'} - / 2  
, 5

where the subscripts I and 2 represent the test and retest situations, respectively. 3
[VIII.5] Differential Weight Procedure for Item Analysis and for On-Line

Item Calibration I
It is obvious that item analysis in the true sense of the word starts from the accurate estimation of

the operating characteristics of the item responses. Thus the nonparametric estimation of the operating
characteristic offers a great deal of information about an item, when it is successful. In this sense we
can say that the Differential Weight Procedure of the Conditional P.D.F. Approach (cf. Chapter 6)
provides us with promise for the successful item analysis in general.
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For the success in adaptive testing, it is essential to create a good initial itempool. Differential
Weight Procedure can effectively be used in selecting appropriate test items for the itempool, applied
repeatedly in pilot studies.

Differential Weight Procedure will especially be useful for the on-line item calibration in computer-
ized adaptive testing. When we use an adaptive test, it is necessary to discard certain test items from
our itempool after they have been administered too frequently, or too seldom, and replace them by new
test items. In so doing, we need to on-line calibrate these new test items, and successful nonparametric
estimation methods adjusted to this situation will be most valuable in order to discover the operating
characteristics of these new test items.

Many computer programs have been written in the present research, in order to materialize this new
method, and to put the theory and methodologies in practice. In developing this method further, it
will be the focus of research to pursue methodologies for estimating differential weight functions under
different circumstances. It should also be noted that we need to develop efficient computer programs
for smoothing out the irregularities of the differential weight function whenever it is needed.

Once the operating characteristics of the test items have been discovered, however, it will be wise
to search for appropriate mathematical forms in order to mathematically simplify them by parameter-
ization. In so doing, observations and mathematical models introduced in Chapter 7 will be useful,
especially in dealing with non-monotonic operating characteristics or those which are strictly increasing
but converging to some values less than unity.

[VIII.61 Use of Informative Distractors

One of the future directions of the computerized adaptive testing will be the use of information
coming from the distractors of the multiple-choice test item, as well as from the correct answer. This
will certainly increase the item information both locally and in total, and, as the result, the estimation
of the individual examinee's ability will become more efficient.

For this reason, an accurate estimation of the plausibility functions of the distractors of multiple-
choice test items becomes very important for the future of computerized adaptive testing. In this
context, again, Differential Weight Procedure of the Conditional P.D.F. Approach will take an important
role, for it will be used not only for estimating the operating characteristics of correct answers but of
any discrete item responses, including the distractors of multiple-choice test items.

Also the content-based observation of informative distractors, which has been described in Chapter
7, will become useful and important. The suggested strategies of writing test items (cf. Section 7.5) can
readily be adopted in the construction of itempools as well as in on-line item calibration in the future
research.

[VIII.T] Discussion and Conclusions

The above sections have summarized the research accomplishments which will directly contribute
to the computerized adaptive testing. Since each accomplishment has been observed and discussed in
detail in the previous chapters, this chapter has to be brief.

Efficient computerized adaptive testing is one of the main objectives of the present research. The
author has been pleased to introduce these accomplishments that will benefit it from various angles.
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IX Other Findings in the Present Research I
There are many other research findings in the present research which have not been reported in the

ONR research reports. They concern those topics that are still being pursued, or that will find their I
places in a more comprehensive framework in the future research.

Among those research findings are those of winsorization of the outliers of the maximum likelihood I
estimates of 0 adopted in the process of the Simple Sum Procedure of the Conditional P.D.F. Approach

for estimating the operating characteristics of discrete item responses. The results turned out to be

fairly successful. We still need further research on this subject, however: before we can evaluate this

variation of the Simple Sum Procedure.

Some considerations and observations have also been made concerning possible applications of the

theories and methodologies developed so far in the area of latent trait models. They include the latent

trait approach to Rorschach diagnosis based upon the Burstein-Loucks scoring system, and the prospect I
of applying latent trait models and methodologies accommodating both psychological and neurological
factors (cf. Chapter 1).
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I
I
I
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